《高考數(shù)學(xué)真題分類匯編 5.3 解三角形 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)真題分類匯編 5.3 解三角形 理(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、高考數(shù)學(xué)真題分類匯編 5.3 解三角形 理
考點(diǎn)一 正弦、余弦定理
1.(xx課標(biāo)Ⅰ,16,5分)已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對邊,a=2,且(2+b)(sin A-sin B)=(c-b)sin C,則△ABC面積的最大值為 .?
答案
2.(xx廣東,12,5分)在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c.已知bcos C+ccos B=2b,則= .?
答案 2
3.(xx福建,12,4分)在△ABC中,A=60°,AC=4,BC=2,則△ABC的面積等于 .?
答案 2
4.(xx天津,12,5分)在△ABC中,內(nèi)角A
2、,B,C所對的邊分別是a,b,c.已知b-c=a,2sin B=3sin C,則cos A的值為 .?
答案 -
5.(xx江蘇,14,5分)若△ABC的內(nèi)角滿足sin A+sin B=2sin C,則cos C的最小值是 .?
答案
6.(xx遼寧,17,12分)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a>c.已知·=2,cos B=,b=3.求:
(1)a和c的值;
(2)cos(B-C)的值.
解析 (1)由·=2得c·acos B=2,
又cos B=,所以ac=6.
由余弦定理,得a2+c2=b2+2accos B.
又b=3,所以a2
3、+c2=9+2×2=13.
解得a=2,c=3或a=3,c=2.
因a>c,所以a=3,c=2.
(2)在△ABC中,sin B===,
由正弦定理,得sin C=sin B=×=.
因a=b>c,所以C為銳角,
因此cos C===.
于是cos(B-C)=cos Bcos C+sin Bsin C
=×+×=.
7.(xx湖南,18,12分)如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=.
(1)求cos∠CAD的值;
(2)若cos∠BAD=-,sin∠CBA=,求BC的長.
解析 (1)在△ADC中,由余弦定理,得
cos∠CAD===.
(2
4、)設(shè)∠BAC=α,則α=∠BAD-∠CAD.
因?yàn)閏os∠CAD=,cos∠BAD=-,
所以sin∠CAD===,
sin∠BAD===.
于是sin α=sin(∠BAD-∠CAD)
=sin∠BADcos∠CAD-cos∠BADsin∠CAD
=×-×=.
在△ABC中,由正弦定理,得=,
故BC===3.
考點(diǎn)二 解三角形及其綜合應(yīng)用
8.(xx課標(biāo)Ⅱ,4,5分)鈍角三角形ABC的面積是,AB=1,BC=,則AC=( )
A.5 B. C.2 D.1
答案 B
9.(xx江西,4,5分)在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.若c2=(a-b)
5、2+6,C=,則△ABC的面積是( )
A.3 B. C. D.3
答案 C
10.(xx重慶,10,5分)已知△ABC的內(nèi)角A,B,C滿足sin 2A+sin(A-B+C)=sin(C-A-B)+,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,則下列不等式一定成立的是( )
A.bc(b+c)>8 B.ab(a+b)>16
C.6≤abc≤12 D.12≤abc≤24
答案 A
11.(xx山東,12,5分)在△ABC中,已知·=tan A,當(dāng)A=時(shí),△ABC的面積為 .?
答案
12.(xx北京,15,13分)如圖,在△ABC中,∠B=,AB=8
6、,點(diǎn)D在BC邊上,且CD=2,cos∠ADC=.
(1)求sin∠BAD;
(2)求BD,AC的長.
解析 (1)在△ADC中,因?yàn)閏os∠ADC=,
所以sin∠ADC=.
所以sin∠BAD=sin(∠ADC-∠B)
=sin∠ADCcos B-cos∠ADCsin B
=×-×=.
(2)在△ABD中,由正弦定理得
BD===3.
在△ABC中,由余弦定理得
AC2=AB2+BC2-2AB·BC·cos B
=82+52-2×8×5×=49.
所以AC=7.
13.(xx陜西,16,12分)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.
(1)若a,
7、b,c成等差數(shù)列,證明:sin A+sin C=2sin(A+C);
(2)若a,b,c成等比數(shù)列,求cos B的最小值.
解析 (1)∵a,b,c成等差數(shù)列,∴a+c=2b.
由正弦定理得sin A+sin C=2sin B.
∵sin B=sin[π-(A+C)]=sin(A+C),
∴sin A+sin C=2sin(A+C).
(2)∵a,b,c成等比數(shù)列,∴b2=ac.
由余弦定理得
cos B==≥=,
當(dāng)且僅當(dāng)a=c時(shí)等號(hào)成立.
∴cos B的最小值為.
14.(xx安徽,16,12分)設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別是a,b,c,且b=3,c=1,
8、A=2B.
(1)求a的值;
(2)求sin的值.
解析 (1)因?yàn)锳=2B,所以sin A=sin 2B=2sin Bcos B.
由正、余弦定理得a=2b·.
因?yàn)閎=3,c=1,所以a2=12,a=2.
(2)由余弦定理得cos A===-.
由于0
9、面積.
解析 (1)由題意得
-=sin 2A-sin 2B,
即sin 2A-cos 2A=sin 2B-cos 2B,
sin=sin.
由a≠b,得A≠B,又A+B∈(0,π),得
2A-+2B-=π,
即A+B=,
所以C=.
(2)由c=,sin A=,=,得a=,
由a