2019-2020年高中數(shù)學(xué) 第二章《橢圓的簡單幾何性質(zhì)》教案 新人教A版選修2-1.doc
《2019-2020年高中數(shù)學(xué) 第二章《橢圓的簡單幾何性質(zhì)》教案 新人教A版選修2-1.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第二章《橢圓的簡單幾何性質(zhì)》教案 新人教A版選修2-1.doc(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第二章《橢圓的簡單幾何性質(zhì)》教案 新人教A版選修2-1 ◆ 知識與技能目標(biāo) 了解用方程的方法研究圖形的對稱性;理解橢圓的范圍、對稱性及對稱軸,對稱中心、離心率、頂點的概念;掌握橢圓的標(biāo)準(zhǔn)方程、會用橢圓的定義解決實際問題;通過例題了解橢圓的第二定義,準(zhǔn)線及焦半徑的概念,利用信息技術(shù)初步了解橢圓的第二定義. ◆ 過程與方法目標(biāo) (1)復(fù)習(xí)與引入過程 引導(dǎo)學(xué)生復(fù)習(xí)由函數(shù)的解析式研究函數(shù)的性質(zhì)或其圖像的特點,在本節(jié)中不僅要注意通過對橢圓的標(biāo)準(zhǔn)方程的討論,研究橢圓的幾何性質(zhì)的理解和應(yīng)用,而且還注意對這種研究方法的培養(yǎng).①由橢圓的標(biāo)準(zhǔn)方程和非負實數(shù)的概念能得到橢圓的范圍;②由方程的性質(zhì)得到橢圓的對稱性;③先定義圓錐曲線頂點的概念,容易得出橢圓的頂點的坐標(biāo)及長軸、短軸的概念;④通過P48的思考問題,探究橢圓的扁平程度量橢圓的離心率.〖板書〗2.1.2橢圓的簡單幾何性質(zhì). (2)新課講授過程 (i)通過復(fù)習(xí)和預(yù)習(xí),知道對橢圓的標(biāo)準(zhǔn)方程的討論來研究橢圓的幾何性質(zhì). 提問:研究曲線的幾何特征有什么意義?從哪些方面來研究? 通過對曲線的范圍、對稱性及特殊點的討論,可以從整體上把握曲線的形狀、大小和位置.要從范圍、對稱性、頂點及其他特征性質(zhì)來研究曲線的幾何性質(zhì). (ii)橢圓的簡單幾何性質(zhì) ①范圍:由橢圓的標(biāo)準(zhǔn)方程可得,,進一步得:,同理可得:,即橢圓位于直線和所圍成的矩形框圖里; ②對稱性:由以代,以代和代,且以代這三個方面來研究橢圓的標(biāo)準(zhǔn)方程發(fā)生變化沒有,從而得到橢圓是以軸和軸為對稱軸,原點為對稱中心; ③頂點:先給出圓錐曲線的頂點的統(tǒng)一定義,即圓錐曲線的對稱軸與圓錐曲線的交點叫做圓錐曲線的頂點.因此橢圓有四個頂點,由于橢圓的對稱軸有長短之分,較長的對稱軸叫做長軸,較短的叫做短軸; ④離心率: 橢圓的焦距與長軸長的比叫做橢圓的離心率(),; . (iii)例題講解與引申、擴展 例4 求橢圓的長軸和短軸的長、離心率、焦點和頂點的坐標(biāo). 分析:由橢圓的方程化為標(biāo)準(zhǔn)方程,容易求出.引導(dǎo)學(xué)生用橢圓的長軸、短軸、離心率、焦點和頂點的定義即可求相關(guān)量. 擴展:已知橢圓的離心率為,求的值. 解法剖析:依題意,,但橢圓的焦點位置沒有確定,應(yīng)分類討論:①當(dāng)焦點在軸上,即時,有,∴,得;②當(dāng)焦點在軸上,即時,有,∴. 例5 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面的一部分.過對對稱的截口是橢圓的一部分,燈絲位于橢圓的一個焦點上,片門位于另一個焦點上,由橢圓一個焦點發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個焦點.已知,,.建立適當(dāng)?shù)淖鴺?biāo)系,求截口所在橢圓的方程. 解法剖析:建立適當(dāng)?shù)闹苯亲鴺?biāo)系,設(shè)橢圓的標(biāo)準(zhǔn)方程為,算出的值;此題應(yīng)注意兩點:①注意建立直角坐標(biāo)系的兩個原則;②關(guān)于的近似值,原則上在沒有注意精確度時,看題中其他量給定的有效數(shù)字來決定. 引申:如圖所示, “神舟”截人飛船發(fā)射升空,進入預(yù)定軌道開始巡天飛行,其軌道是以地球的中心為一個焦點的橢圓,近地點距地面,遠地點距地面,已知地球的半徑.建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求出橢圓的軌跡方程. 例6如圖,設(shè)與定點的距離和它到直線:的距離的比是常數(shù),求點的軌跡方程. 分析:若設(shè)點,則,到直線:的距離,則容易得點的軌跡方程. 引申:(用《幾何畫板》探究)若點與定點的距離和它到定直線:的距離比是常數(shù),則點的軌跡方程是橢圓.其中定點是焦點,定直線:相應(yīng)于的準(zhǔn)線;由橢圓的對稱性,另一焦點,相應(yīng)于的準(zhǔn)線:. ◆ 情感、態(tài)度與價值觀目標(biāo) 在合作、互動的教學(xué)氛圍中,通過師生之間、學(xué)生之間的交流、合作、互動實現(xiàn)共同探究,教學(xué)相長的教學(xué)活動情境,結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生科學(xué)探索精神、審美觀和科學(xué)世界觀,激勵學(xué)生創(chuàng)新.必須讓學(xué)生認同和掌握:橢圓的簡單幾何性質(zhì),能由橢圓的標(biāo)準(zhǔn)方程能直接得到橢圓的范圍、對稱性、頂點和離心率;必須讓學(xué)生認同與理解:已知幾何圖形建立直角坐標(biāo)系的兩個原則,①充分利用圖形對稱性,②注意圖形的特殊性和一般性;必須讓學(xué)生認同與熟悉:取近似值的兩個原則:①實際問題可以近似計算,也可以不近似計算,②要求近似計算的一定要按要求進行計算,并按精確度要求進行,沒有作說明的按給定的有關(guān)量的有效數(shù)字處理;讓學(xué)生參與并掌握利用信息技術(shù)探究點的軌跡問題,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和掌握利用先進教學(xué)輔助手段的技能. ◆能力目標(biāo) (1) 分析與解決問題的能力:通過學(xué)生的積極參與和積極探究,培養(yǎng)學(xué)生的分析問題和解決問題的能力. (2) 思維能力:會把幾何問題化歸成代數(shù)問題來分析,反過來會把代數(shù)問題轉(zhuǎn)化為幾何問題來思考;培養(yǎng)學(xué)生的會從特殊性問題引申到一般性來研究,培養(yǎng)學(xué)生的辯證思維能力. (3) 實踐能力:培養(yǎng)學(xué)生實際動手能力,綜合利用已有的知識能力. (4) 創(chuàng)新意識能力:培養(yǎng)學(xué)生思考問題、并能探究發(fā)現(xiàn)一些問題的能力,探究解決問題的一般的思想、方法和途徑. 練習(xí):第52頁1、2、3、4、5、6、7 作業(yè):第53頁4、5- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 橢圓的簡單幾何性質(zhì) 2019-2020年高中數(shù)學(xué) 第二章橢圓的簡單幾何性質(zhì)教案 新人教A版選修2-1 2019 2020 年高 數(shù)學(xué) 第二 橢圓 簡單 幾何 性質(zhì) 教案 新人 選修
鏈接地址:http://m.jqnhouse.com/p-2587077.html