高中數(shù)學(xué)(北師大版)選修2-2教案:第4章 定積分的概念 第一課時參考教案

上傳人:每**** 文檔編號:35574339 上傳時間:2021-10-27 格式:DOC 頁數(shù):6 大?。?.73MB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué)(北師大版)選修2-2教案:第4章 定積分的概念 第一課時參考教案_第1頁
第1頁 / 共6頁
高中數(shù)學(xué)(北師大版)選修2-2教案:第4章 定積分的概念 第一課時參考教案_第2頁
第2頁 / 共6頁
高中數(shù)學(xué)(北師大版)選修2-2教案:第4章 定積分的概念 第一課時參考教案_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

8 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué)(北師大版)選修2-2教案:第4章 定積分的概念 第一課時參考教案》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)(北師大版)選修2-2教案:第4章 定積分的概念 第一課時參考教案(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 1 定積分的概念 第一課時 一、教學(xué)目標: 理解求曲邊圖形面積的過程:分割、以直代曲、逼近,感受在其過程中滲透的思想方法。 二、教學(xué)重難點:   重點:掌握過程步驟:分割、以直代曲、求和、逼近(取極限) 難點:對過程中所包含的基本的微積分 “以直代曲”的思想的理解 三、教學(xué)方法:探析歸納,講練結(jié)合 四、教學(xué)過程 1、創(chuàng)設(shè)情景 我們學(xué)過如何求正方形、長方形、三角形等的面積,這些圖形都是由直線段圍成的。那么,如何求曲線圍成的平面圖形的面積呢?這就是定積分要解決的問題。定積分在科學(xué)研究和實際生活中都有非常廣泛的應(yīng)用。本節(jié)我們將學(xué)習(xí)定積分的基本概念以及定積分的簡單應(yīng)用,初步

2、體會定積分的思想及其應(yīng)用價值。 一個概念:如果函數(shù)在某一區(qū)間上的圖像是一條連續(xù)不斷的曲線,那么就把函數(shù)稱為區(qū)間上的連續(xù)函數(shù).(不加說明,下面研究的都是連續(xù)函數(shù)) 2、新課探析 問題:如圖,陰影部分類似于一個梯形,但有一邊是曲線的一段,我們把由直線和曲線所圍成的圖形稱為曲邊梯形.如何計算這個曲邊梯形的面積? 例題:求圖中陰影部分是由拋物線,直線以及軸所圍成的平面圖形的面積S。 思考:(1)曲邊梯形與“直邊圖形”的區(qū)別?(2)能否將求這個曲邊梯形面積S的問題轉(zhuǎn)化為求“直邊圖形”面積的問題? - 2 - / 6 分析:曲邊梯形與“直邊圖形”的主要區(qū)別:曲邊梯形有一邊是曲線段,“直

3、邊圖形”的所有邊都是直線段.“以直代曲”的思想的應(yīng)用. x x x 1 x 1 x y 1 x y y 把區(qū)間分成許多個小區(qū)間,進而把區(qū)邊梯形拆為一些小曲邊梯形,對每個小曲邊梯形“以直代取”,即用矩形的面積近似代替小曲邊梯形的面積,得到每個小曲邊梯形面積的近似值,對這些近似值求和,就得到曲邊梯形面積的近似值.分割越細,面積的近似值就越精確。當分割無限變細時,這個近似值就無限逼近所求曲邊梯形的面積S.也即:用劃歸為計算矩形面積和逼近的思想方法求出曲邊梯形的面積. 解:(1).分割 在區(qū)間上等間隔地插入個點,將區(qū)間等分成個小區(qū)間:,,…,

4、記第個區(qū)間為,其長度為 分別過上述個分點作軸的垂線,從而得到個小曲邊梯形,他們的面積分別記作: ,,…,顯然, (2)近似代替 記,如圖所示,當很大,即很小時,在區(qū)間上,可以認為函數(shù)的值變化很小,近似的等于一個常數(shù),不妨認為它近似的等于左端點處的函數(shù)值,從圖形上看,就是用平行于軸的直線段近似的代替小曲邊梯形的曲邊(如圖).這樣,在區(qū)間上,用小矩形的面積近似的代替,即在局部范圍內(nèi)“以直代取”,則有 ① (3)求和:由①,上圖中陰影部分的面積為 ====,從而得到的近似值 (4)取極限:分別將區(qū)間等分8,16,20,…等份(如圖),可以看到,當趨向于無窮大時,

5、即趨向于0時,趨向于,從而有 從數(shù)值上的變化趨勢 3.求曲邊梯形面積的四個步驟:第一步:分割.在區(qū)間中任意插入各分點,將它們等分成個小區(qū)間,區(qū)間的長度,第二步:近似代替,“以直代取”。用矩形的面積近似代替小曲邊梯形的面積,求出每個小曲邊梯形面積的近似值.第三步:求和.第四步:取極限。 說明:1.歸納以上步驟,其流程圖表示為:分割以直代曲求和逼近 2.最后所得曲邊形的面積不是近似值,而是真實值 四、課堂小結(jié):求曲邊梯形的思想和步驟:分割以直代曲求和逼近 (“以直代曲”的思想) 五、教學(xué)后記 希望對大家有所幫助,多謝您的瀏覽!

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲