初三數(shù)學上下冊知識點總結(jié)與重點難點總結(jié).doc
《初三數(shù)學上下冊知識點總結(jié)與重點難點總結(jié).doc》由會員分享,可在線閱讀,更多相關(guān)《初三數(shù)學上下冊知識點總結(jié)與重點難點總結(jié).doc(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
初三數(shù)學知識整理與重點難點總結(jié) 第21章 二次根式 知識框圖 理解并掌握下列結(jié)論: (1)是非負數(shù); (2); (3); I.二次根式的定義和概念: 1、定義:一般地,形如√ā(a≥0)的代數(shù)式叫做二次根式。當a>0時,√a表示a的算數(shù)平方根,√0=0 2、概念:式子√?。╝≥0)叫二次根式?!台。╝≥0)是一個非負數(shù)。 II.二次根式√ā的簡單性質(zhì)和幾何意義 1)a≥0 ; √ā≥0 [ 雙重非負性 ] 2)(√?。2=a (a≥0)[任何一個非負數(shù)都可以寫成一個數(shù)的平方的形式] 3) √(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論。 IV.二次根式的乘法和除法 1 運算法則 √a·√b=√ab(a≥0,b≥0) √a/b=√a /√b(a≥0,b>0) 二數(shù)二次根之積,等于二數(shù)之積的二次根。 2 共軛因式 如果兩個含有根式的代數(shù)式的積不再含有根式,那么這兩個代數(shù)式叫做共軛因式,也稱互為有理化根式。 V.二次根式的加法和減法 1 同類二次根式 一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式。 2 合并同類二次根式 把幾個同類二次根式合并為一個二次根式就叫做合并同類二次根式。 3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數(shù)相同的進行合并 Ⅵ.二次根式的混合運算 1確定運算順序 2靈活運用運算定律 3正確使用乘法公式 4大多數(shù)分母有理化要及時 5在有些簡便運算中也許可以約分,不要盲目有理化 VII.分母有理化 分母有理化有兩種方法 I.分母是單項式 如:√a/√b=√a×√b/√b×√b=√ab/b II.分母是多項式 要利用平方差公式 如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b III.分母是多項式 要利用平方差公式 如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b 第22章 一元二次方程 知識框圖 旋轉(zhuǎn)的定義 旋轉(zhuǎn)對稱中心 把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。 也就是說: ?、?中心對稱圖形:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形。 ?、谥行膶ΨQ:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。 中心對稱圖形 正(2N)邊形(N為大于1的正整數(shù)),線段,矩形,菱形,圓 只是中心對稱圖形 平行四邊形等. 第24章 圓 知識框圖 圓和點的位置關(guān)系:以點P與圓O的為例(設(shè)P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r。 直線與圓有3種位置關(guān)系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。以直線AB與圓O為例(設(shè)OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。 兩圓之間有5種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r。 圓的平面幾何性質(zhì)和定理 一有關(guān)圓的基本性質(zhì)與定理 ⑴圓的確定:不在同一直線上的三個點確定一個圓。 圓的對稱性質(zhì):圓是軸對稱圖形,其對稱軸是任意一條通過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。 垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的2條弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的2條弧。 ⑵有關(guān)圓周角和圓心角的性質(zhì)和定理 在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。 一條弧所對的圓周角等于它所對的圓心角的一半。 直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑?!? ?、怯嘘P(guān)外接圓和內(nèi)切圓的性質(zhì)和定理 ①一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等; ?、趦?nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形三邊距離相等。 ?、跾三角=1/2*△三角形周長*內(nèi)切圓半徑 ?、軆上嗲袌A的連心線過切點(連心線:兩個圓心相連的線段) ⑤圓O中的弦PQ的中點M,過點M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點。 〖有關(guān)切線的性質(zhì)和定理〗 圓的切線垂直于過切點的半徑;經(jīng)過半徑的一端,并且垂直于這條半徑的直線,是這個圓的切線。 切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。 切線的性質(zhì):(1)經(jīng)過切點垂直于這條半徑的直線是圓的切線。(2)經(jīng)過切點垂直于切線的直線必經(jīng)過圓心。(3)圓的切線垂直于經(jīng)過切點的半徑。 切線長定理:從圓外一點到圓的兩條切線的長相等,那點與圓心的連線平分切線的夾角。 〖有關(guān)圓的計算公式〗 1.圓的周長C=2πr=πd 2.圓的面積S=πr^2; 3.扇形弧長l=nπr/180 4.扇形面積S=π(R^2-r^2) 5.圓錐側(cè)面積S=πrl 第25章 概率初步 知識框圖 第26章 二次函數(shù) 知識框圖 定義與定義表達式 一般地,自變量x和因變量y之間存在如下關(guān)系: 一般式:y=ax^2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù)。 頂點式:y=a(x-h)^2+k 交點式(與x軸):y=a(x-x1)(x-x2) 重要概念:(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。) 二次函數(shù)表達式的右邊通常為二次。 x是自變量,y是x的二次函數(shù) x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式) 二次函數(shù)的圖像 在平面直角坐標系中作出二次函數(shù)y=x²的圖像, 可以看出,二次函數(shù)的圖像是一條永無止境的拋物線。 拋物線的性質(zhì) 1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a。 對稱軸與拋物線唯一的交點為拋物線的頂點P。 特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0) 2.拋物線有一個頂點P,坐標為P ( -b/2a ,(4ac-b²)/4a ) 當-b/2a=0時,P在y軸上;當Δ= b²-4ac=0時,P在x軸上。 3.二次項系數(shù)a決定拋物線的開口方向和大小。 當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。 |a|越大,則拋物線的開口越小。 4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。 當a與b同號時(即ab>0),對稱軸在y軸左; 因為若對稱軸在左邊則對稱軸小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同號 當a與b異號時(即ab<0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要異號 事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值。可通過對二次函數(shù)求導得到。 5.常數(shù)項c決定拋物線與y軸交點。 拋物線與y軸交于(0,c) 6.拋物線與x軸交點個數(shù) Δ= b²-4ac>0時,拋物線與x軸有2個交點。 Δ= b²-4ac=0時,拋物線與x軸有1個交點。 _______ Δ= b²-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x= -b±√b²-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a) 當a>0時,函數(shù)在x= -b/2a處取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是減函數(shù),在{x|x>-b/2a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b²/4a}相反不變 當b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=ax²+c(a≠0) 解析式: 第27章 相似 知識框圖 相似三角形的認識 對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形。(similar triangles)。 互為相似形的三角形叫做相似三角形 相似三角形的判定方法 根據(jù)相似圖形的特征來判斷。(對應(yīng)邊成比例,對應(yīng)角相等) 1.平行于三角形一邊的直線(或兩邊的延長線)和其他兩邊相交,所構(gòu)成的三角形與原三角形相似; (這是相似三角形判定的引理,是以下判定方法證明的基礎(chǔ)。這個引理的證明方法需要平行線分線段成比例的證明) 2.如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似; 直角三角形相似判定定理 1.斜邊與一條直角邊對應(yīng)成比例的兩直角三角形相似。 2.直角三角形被斜邊上的高分成的兩個直角三角形與原直角三角形相似,并且分成的兩個直角三角形也相似。 射影定理 三角形相似的判定定理推論 推論一:頂角或底角相等的那個的兩個等腰三角形相似。 推論二:腰和底對應(yīng)成比例的兩個等腰三角形相似。 推論三:有一個銳角相等的兩個直角三角形相似。 推論四:直角三角形被斜邊上的高分成的兩個直角三角形和原三角形都相似。 推論五:如果一個三角形的兩邊和其中一邊上的中線與另一個三角形的對應(yīng)部分成比例,那么這兩個三角形相似。 推論六:如果一個三角形的兩邊和第三邊上的中線與另一個三角形的對應(yīng)部分成比例,那么這兩個三角形相似。 相似三角形的性質(zhì) 1.相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。 2.相似三角形周長的比等于相似比。 3.相似三角形面積的比等于相似比的平方。 相似三角形的特例 能夠完全重合的兩個三角形叫做全等三角形。(congruent triangles) 全等三角形是相似三角形的特例。全等三角形的特征: 1.形狀完全相同,相似比是k=1。 全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。 因此,相似三角形包括全等三角形。 全等三角形的定義 能夠完全重合的兩個三角形稱為全等三角形。(注:全等三角形是相似三角形中的特殊情況) 當兩個三角形完全重合時,互相重合的頂點叫做對應(yīng)頂點,互相重合的邊叫做對應(yīng)邊,互相重合的角叫做對應(yīng)角。 由此,可以得出:全等三角形的對應(yīng)邊相等,對應(yīng)角相等。 (1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的邊是對應(yīng)邊; (2)全等三角形對應(yīng)邊所對的角是對應(yīng)角,兩條對應(yīng)邊所夾的角是對應(yīng)角; (3)有公共邊的,公共邊一定是對應(yīng)邊; (4)有公共角的,角一定是對應(yīng)角; (5)有對頂角的,對頂角一定是對應(yīng)角; 三角形全等的判定公理及推論 1、三組對應(yīng)邊分別相等的兩個三角形全等(簡稱SSS或“邊邊邊”),這一條也說明了三角形具有穩(wěn)定性的原因。 2、有兩邊及其夾角對應(yīng)相等的兩個三角形全等(SAS或“邊角邊”)。 3、有兩角及其夾邊對應(yīng)相等的兩個三角形全等(ASA或“角邊角”)。 由3可推到 4、有兩角及一角的對邊對應(yīng)相等的兩個三角形全等(AAS或“角角邊”) 5、直角三角形全等條件有:斜邊及一直角邊對應(yīng)相等的兩個直角三角形全等(HL或“斜邊,直角邊”) 所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。 注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。 A是英文角的縮寫(angle),S是英文邊的縮寫(side)。 全等三角形的性質(zhì) 1、全等三角形的對應(yīng)角相等、對應(yīng)邊相等。 2、全等三角形的對應(yīng)邊上的高對應(yīng)相等。 3、全等三角形的對應(yīng)角平分線相等。 4、全等三角形的對應(yīng)中線相等。 5、全等三角形面積相等。 6、全等三角形周長相等。 7、三邊對應(yīng)相等的兩個三角形全等。(SSS) 8、兩邊和它們的夾角對應(yīng)相等的兩個三角形全等。(SAS) 9、兩角和它們的夾邊對應(yīng)相等的兩個三角形全等。(ASA) 10、兩個角和其中一個角的對邊對應(yīng)相等的兩個三角形全等。(AAS) 11、斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等。(HL) 全等三角形的運用 1、性質(zhì)中三角形全等是條件,結(jié)論是對應(yīng)角、對應(yīng)邊相等。 而全等的判定卻剛好相反。 2、利用性質(zhì)和判定,學會準確地找出兩個全等三角形中的對應(yīng)邊與對應(yīng)角是關(guān)鍵。在寫兩個三角形全等時,一定把對應(yīng)的頂點,角、邊的順序?qū)懸恢?,為找對?yīng)邊,角提供方便。 3,當圖中出現(xiàn)兩個以上等邊三角形時,應(yīng)首先考慮用SAS找全等三角形。 第28章 銳角三角函數(shù) 知識框圖 第29章 投影與視圖 知識框圖 代數(shù)重點難點總結(jié) 方程(組) 一、 基本概念 1.方程、方程的解(根)、方程組的解、解方程(組) 二、 一元二次方程 1.定義及一般形式: 2.解法:⑴直接開平方法(注意特征) ⑵配方法(注意步驟—推倒求根公式) ⑶公式法: ⑷因式分解法(特征:左邊=0) 3.根的判別式: 4.根與系數(shù)的關(guān)系(韋達定理):+=, = 逆定理:若 ,則以 ,為根的一元二次方程是:a(x-)(x-)=0。 5.常用等式: 三、 可化為一元二次方程的方程 1.分式方程 ⑴定義 ⑵基本思想: 去分母 ⑶基本解法:①去分母法②換元法(如, ) ⑷驗根及方法 2.無理方程 ⑴定義 ⑵基本思想: 分母有理化 ⑶基本解法:①乘方法(注意技巧!?。趽Q元法(例, ) ⑷驗根及方法 3.簡單的二元二次方程組 由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。 四、 列方程解應(yīng)用題 一概述 列方程(組)解應(yīng)用題是中學數(shù)學聯(lián)系實際的一個重要方面。其具體步驟是: ⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。 ⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。 ⑶用含未知數(shù)的代數(shù)式表示相關(guān)的量。 ⑷尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。 ⑸解方程及檢驗。 ⑹答案。 綜上所述,列方程解應(yīng)用題實質(zhì)是先把實際問題轉(zhuǎn)化為數(shù)學問題(設(shè)元、列方程),在由數(shù)學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。 函數(shù)及其圖象 ★重難點★二次函數(shù)的圖象和性質(zhì)。 一、平面直角坐標系 1.各象限內(nèi)點的坐標的特點 2.坐標軸上點的坐標的特點 3.關(guān)于坐標軸、原點對稱的點的坐標的特點 4.坐標平面內(nèi)點與有序?qū)崝?shù)對的對應(yīng)關(guān)系 二、函數(shù) 1.表示方法:⑴解析法;⑵列表法;⑶圖象法。 2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實際問題有 意義。 3.畫函數(shù)圖象:⑴列表;⑵描點;⑶連線。 三、二次函數(shù) (定義→圖象→性質(zhì)) ⑴定義: ⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。 用配方法變?yōu)?,則頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a<0時,開口向下。 ⑶性質(zhì):a>0時,在對稱軸左側(cè)…,右側(cè)…;a<0時,在對稱軸左側(cè)…,右側(cè)…。 四、重要解題方法 1. 用待定系數(shù)法求解析式(列方程[組]求解)。對求二次函數(shù)的解析式,要合理選用一般式或頂點式,并應(yīng)充分運用拋物線關(guān)于對稱軸對稱的特點,尋找新的點的坐標。 2.利用圖象二次函數(shù)中的k、b;a、b、c的符號。 解直角三角形 ★重難點★解直角三角形 一、三角函數(shù) 1.定義:在Rt△ABC中,∠C=Rt∠,則sinA= ;cosA= ;tgA= ;ctgA= . 2. 特殊角的三角函數(shù)值: 0° 30° 45° 60° 90° sinα 0 1 cosα 1 0 tgα / 1 3. 互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;… 4. 三角函數(shù)值隨角度變化的關(guān)系 5.查三角函數(shù)表 二、解直角三角形 1. 定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。 2. 依據(jù):①邊的關(guān)系: ②角的關(guān)系:A+B=90° ③邊角關(guān)系:三角函數(shù)的定義。 注意:盡量避免使用中間數(shù)據(jù)和除法。 三、對實際問題的處理 1. 俯、仰角: 2.方位角、象限角: 3.坡度:tgα 4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。 幾何 四邊形 ★重難點★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。 分類表: 1.一般性質(zhì)(角) ⑴內(nèi)角和:360° ⑵順次連結(jié)各邊中點得平行四邊形。 推論1:順次連結(jié)對角線相等的四邊形各邊中點得菱形。 推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點得矩形。 ⑶外角和:360° 2.特殊四邊形 ⑴研究它們的一般方法: ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定 ⑶判定步驟:四邊形→平行四邊形→矩形→正方形 ┗→菱形——↑ ⑷對角線的紐帶作用: 3.對稱圖形 ⑴軸對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì)) 4.有關(guān)定理:①平行線等分線段定理及其推論1、2 ②三角形、梯形的中位線定理 ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形) 5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結(jié)頂點和對腰中點并延長與底邊相交”轉(zhuǎn)化為三角形。 6.作圖:任意等分線段。 第十章 圓 ★重難點★①圓的重要性質(zhì);②直線與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線段定理。 一、圓的基本性質(zhì) 1.圓的定義 2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。 3.“三點定圓”定理 4.垂徑定理及其推論 5.“等對等”定理及其推論 5. 與圓有關(guān)的角:⑴圓心角定義(等對等定理) ⑵圓周角定義(圓周角定理,與圓心角的關(guān)系) ⑶弦切角定義(弦切角定理) 二、直線和圓的位置關(guān)系 1.三種位置及判定與性質(zhì): 相離、相切、相交 2.切線的性質(zhì)(重點) 3.切線的判定定理(重點)。圓的切線的判定有⑴…⑵… 4.切線長定理 三、圓換圓的位置關(guān)系 1.五種位置關(guān)系及判定與性質(zhì):(重點:相切) 外離、外切、相交、內(nèi)切、內(nèi)含 2.相切(交)兩圓連心線的性質(zhì)定理 3.兩圓的公切線:⑴定義⑵性質(zhì) 四、與圓有關(guān)的比例線段 1.相交弦定理 2.切割線定理 五、與和正多邊形 1.圓的內(nèi)接、外切多邊形(三角形、四邊形) 2.三角形的外接圓、內(nèi)切圓及性質(zhì) 3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì) 4.正多邊形及計算 中心角: 內(nèi)角的一半:(解Rt△OAM可求出相關(guān)元素等) 六、 一組計算公式 1.圓周長公式 2.圓面積公式 3.扇形面積公式 4.弧長公式 5.弓形面積的計算方法 6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計算 七、 點的軌跡 六條基本軌跡 八、 有關(guān)作圖 1.作三角形的外接圓、內(nèi)切圓 2.平分已知弧 3.作已知兩線段的比例中項 4.等分圓周:4、8;6、3等分 九、 基本圖形 十、 重要輔助線 1.作半徑 2.見弦往往作弦心距 3.見直徑往往作直徑上的圓周角 4.切點圓心莫忘連 5.兩圓相切公切線(連心線) 6.兩圓相交公共弦 - 16 -- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
32 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 初三 數(shù)學 上下冊 知識點 總結(jié) 重點難點
鏈接地址:http://m.jqnhouse.com/p-1583883.html