2022年高中數(shù)學 直線與圓錐曲線 板塊二 直線與雙曲線完整講義(學生版)

上傳人:xt****7 文檔編號:105147307 上傳時間:2022-06-11 格式:DOC 頁數(shù):5 大?。?4.52KB
收藏 版權(quán)申訴 舉報 下載
2022年高中數(shù)學 直線與圓錐曲線 板塊二 直線與雙曲線完整講義(學生版)_第1頁
第1頁 / 共5頁
2022年高中數(shù)學 直線與圓錐曲線 板塊二 直線與雙曲線完整講義(學生版)_第2頁
第2頁 / 共5頁
2022年高中數(shù)學 直線與圓錐曲線 板塊二 直線與雙曲線完整講義(學生版)_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高中數(shù)學 直線與圓錐曲線 板塊二 直線與雙曲線完整講義(學生版)》由會員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學 直線與圓錐曲線 板塊二 直線與雙曲線完整講義(學生版)(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高中數(shù)學 直線與圓錐曲線 板塊二 直線與雙曲線完整講義(學生版) 1.橢圓的定義:平面內(nèi)與兩個定點的距離之和等于常數(shù)(大于)的點的軌跡(或集合)叫做橢圓. 這兩個定點叫做橢圓的焦點,兩焦點的距離叫做橢圓的焦距. 2.橢圓的標準方程: ①,焦點是,,且. ②,焦點是,,且. 3.橢圓的幾何性質(zhì)(用標準方程研究): ⑴范圍:,; ⑵對稱性:以軸、軸為對稱軸,以坐標原點為對稱中心,橢圓的對稱中心又叫做橢圓的中心; ⑶橢圓的頂點:橢圓與它的對稱軸的四個交點,如圖中的; ⑷長軸與短軸:焦點所在的對稱軸上,兩個頂點間的線段稱為橢圓的長軸,如圖中線段的;另一對頂點間的線

2、段叫做橢圓的短軸,如圖中的線段. ⑸橢圓的離心率:,焦距與長軸長之比,,越趨近于,橢圓越扁; 反之,越趨近于,橢圓越趨近于圓. 4.直線:與圓錐曲線:的位置關(guān)系: 直線與圓錐曲線的位置關(guān)系可分為:相交、相切、相離.對于拋物線來說,平行于對稱軸的直線與拋物線相交于一點,但并不是相切;對于雙曲線來說,平行于漸近線的直線與雙曲線只有一個交點,但并不相切.這三種位置關(guān)系的判定條件可歸納為: 設(shè)直線:,圓錐曲線:,由 消去(或消去)得:. 若,,相交;相離;相切. 若,得到一個一次方程:①為雙曲線,則與雙曲線的漸近線平行;②為拋物線,則與拋物線的對稱軸平行. 因此直線與拋物線、雙曲

3、線有一個公共點是直線與拋物線、雙曲線相切的必要條件,但不是充分條件. 5.連結(jié)圓錐曲線上兩個點的線段稱為圓錐曲線的弦. 求弦長的一種求法是將直線方程與圓錐曲線的方程聯(lián)立,求出兩交點的坐標,然后運用兩點間的距離公式來求; 另外一種求法是如果直線的斜率為,被圓錐曲線截得弦兩端點坐標分別為,則弦長公式為. 兩根差公式: 如果滿足一元二次方程:, 則(). 6.直線與圓錐曲線問題的常用解題思路有: ①從方程的觀點出發(fā),利用根與系數(shù)的關(guān)系來進行討論,這是用代數(shù)方法來解決幾何問題的基礎(chǔ).要重視通過設(shè)而不求與弦長公式簡化計算,并同時注意在適當時利用圖形的平面幾何性質(zhì). ②以向量為工具,利用

4、向量的坐標運算解決與中點、弦長、角度相關(guān)的問題. 典例分析 【例1】 若直線與雙曲線的右支有兩個不同的交點,則的取值范圍是_______ 【例2】 過雙曲線的右焦點直線交雙曲線于、兩點,若,則這樣的直線有_____條

5、

6、

7、 【例3】 過點與雙曲線有且僅有一個公共點的直線的斜

8、率的取值范圍為______ 【例4】 直線與雙曲線相交于兩點、,則=_________. 【例5】 若直線與雙曲線沒有公共點,求的取值范圍. 【例6】 若直線與雙曲線有且只有一個公共點,求的的值. 【例7】 若直線與雙曲線有兩個相異公共點,求的取值范圍. 【例8】 直線與雙曲線的一支有兩個相異公共點,求的取值范圍. 【例9】 若直線與雙曲線的兩支各有一個公共點,求的取值范圍. 【例10】 若直線與雙曲線的右支有兩個相異公共點,求的取值范圍. 【例11】 已知不論取何實數(shù),直線與雙曲線總有公共點,求實數(shù)的取值范圍.

9、 【例12】 直線與雙曲線交于、兩點.①當為何值時,、分別在雙曲線的兩支上?②當為何值時,以為直徑的圓過坐標原點? 【例13】 已知直線與雙曲線相交于兩個不同點、. ①求的取值范圍; ②若軸上的點到、兩點的距離相等,求的值. 【例14】 已知直線與雙曲線,記雙曲線的右頂點為,是否存在實數(shù),使得直線與雙曲線的右支交于兩點,且,若存在,求出值:若不存在,請說明理由. 【例15】 已知點,,動點滿足條件,記動點的軌跡為. ⑴求的方程; ⑵若、是曲線上不同的兩點,是坐標原點,求的最小值. 【例16】 直線與雙曲線的右支交不同的,兩點, ⑴求實數(shù)

10、取值范圍; ⑵是否存在實數(shù),使得以線段直徑的圓經(jīng)過雙曲線的右焦點.若存在,求出值:若不存在,請說明理由. 【例17】 雙曲線的中心在原點,右焦點為,漸近線方程為. ⑴求雙曲線的方程; ⑵設(shè)直線:與雙曲線交于、兩點,問:當為何值時,以為直徑的圓過原點. 【例18】 已知雙曲線的中心在原點,焦點在軸上,離心率為,過其右焦點且傾斜角為的直線被雙曲線截得的弦的長為. ⑴求此雙曲線的方程; ⑵若直線與該雙曲線交于兩個不同點、,且以線段為直徑的圓過原點,求定點到直線的距離的最大值,并求此時直線的方程. ______________________________

11、_____________________________________________________________________________________________ / / / / / /○/ / / / / /○/ / / / / /○ 密 ○ 封 ○ 裝 ○ 訂 ○ 線 ○/ / / / / /○/ / / / / /○/ / / / / / 密 封 線 內(nèi) 不

12、 要 答 題 【例19】 在中,已知、,動點滿足. ⑴求動點的軌跡方程; ⑵設(shè)點,,過點作直線垂直,且與直線交于點,試在軸上確定一點,使得; ⑶在⑵的條件下,設(shè)點關(guān)于軸的對稱點為,求的值. 【例20】 已知中心在原點的雙曲線的右焦點為,右頂點為. ⑴求雙曲線的方程; ⑵若直線與雙曲線恒有兩個不同的交點和,且(其中為原點),求的取值范圍. 【例21】 已知雙曲線,設(shè)過點的直線的方向向量 . ⑴當直線與雙曲線的一條漸近線平行時,求直線的方程及與的距離; ⑵證明:當>時,

13、在雙曲線的右支上不存在點,使之到直線的距離為. 【例22】 已知雙曲線的方程為,離心率,頂點到漸近線的距離為. ⑴求雙曲線的方程; ⑵如圖,是雙曲線上一點,,兩點在雙曲線的兩條漸近線上,且分別位于第一、二象限,若,,求面積的取值范圍. 【例23】 已知以原點為中心,為右焦點的雙曲線的離心率. ⑴求雙曲線C的標準方程及其漸近線方程; ⑵如圖,已知過點的直線與過點(其中)的直線的交點在雙曲線上,直線與兩條漸近線分別交與、兩點,求的面積. 【例24】 已知動圓過點并且與圓相外切,動圓圓心的軌跡為,軌跡與軸的交點為. ⑴求軌跡的方程; ⑵設(shè)直線過點且與軌跡有兩個不同的交點,,求直線的斜率的取值范圍; ⑶在⑵的條件下,若,證明直線過定點,并求出這個定點的坐標. 【例25】 已知點為雙曲線(為正常數(shù))上任一點,為雙曲線的右焦點,過 作右準線的垂線,垂足為,連接并延長交軸于. ⑴求線段的中點的軌跡的方程; ⑵設(shè)軌跡與軸交于、兩點,在上任取一點,直線,分別交軸于兩點.求證:以為直徑的圓過兩定點. (焦點在軸上的標準雙曲線的準線方程為) 【例26】 已知雙曲線的離心率為,右準線方程為. ⑴求雙曲線的方程; ⑵設(shè)直線是圓上動點處的切線,與雙曲線交于不同的兩點,證明的大小為定值.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲