2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題5 立體幾何 第2講 直線與平面的位置關(guān)系 理

上傳人:xt****7 文檔編號:105273909 上傳時間:2022-06-11 格式:DOC 頁數(shù):9 大?。?06.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題5 立體幾何 第2講 直線與平面的位置關(guān)系 理_第1頁
第1頁 / 共9頁
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題5 立體幾何 第2講 直線與平面的位置關(guān)系 理_第2頁
第2頁 / 共9頁
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題5 立體幾何 第2講 直線與平面的位置關(guān)系 理_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題5 立體幾何 第2講 直線與平面的位置關(guān)系 理》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題5 立體幾何 第2講 直線與平面的位置關(guān)系 理(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題5 立體幾何 第2講 直線與平面的位置關(guān)系 理 空間線面位置關(guān)系的判斷 訓(xùn)練提示:判斷空間中線面位置關(guān)系關(guān)鍵是根據(jù)定義、判定定理、性質(zhì)定理進行判斷,注意反證法的應(yīng)用. 1. (xx河南六市第一次聯(lián)考)如圖,四棱錐SABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點. (1)求證:AC⊥SD; (2)若SD⊥平面PAC,側(cè)棱SC上是否存在一點E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,試說明理由. (1) 證明:連接BD,設(shè)AC交BD于O,由題意SO⊥AC. 在正方形ABCD中,AC⊥BD, 所以AC⊥平

2、面SBD,得AC⊥SD. (2)解:在棱SC上存在一點E,使BE∥平面PAC. 設(shè)正方形邊長為a,則SD=a, 由SD⊥平面PAC可得PD=a,故可在SP上取一點N,使PN=PD,過N作PC的平行線與SC的交點即為E.連接BN(圖略),在△BDN中知BN∥PO,又由于NE∥PC,故平面BEN∥平面PAC,得BE∥平面PAC,由于SN∶NP=2∶1,故SE∶EC=2∶1. 2. (xx蘭州高三診斷)如圖,在四棱柱ABCDA1B1C1D1中,底面ABCD是等腰梯形,AB=2,BC=CD=1,AB∥CD,頂點D1在底面ABCD內(nèi)的射影恰為點C. (1)求證:AD1⊥BC; (2)在A

3、B上是否存在點M,使得C1M∥平面ADD1A1?若存在,確定點M的位置;若不存在,請說明理由. (1)證明: 連接D1C, 則D1C⊥平面ABCD, 所以D1C⊥BC, 在等腰梯形ABCD中,連接AC, 因為AB=2,BC=CD=1, AB∥CD, 所以BC⊥AC, 所以BC⊥平面AD1C, 所以AD1⊥BC. 解:(2)設(shè)M是AB上的點, 因為AB∥CD, 所以AM∥D1C1, 因經(jīng)過AM,D1C1的平面與平面ADD1A1相交于AD1,要使C1M∥平面ADD1A1,則C1M∥AD1,即四邊形AD1C1M為平行四邊形,此時D1C1=DC=AM=AB,即點M為AB的

4、中點. 所以在AB上存在點M,使得C1M∥平面ADD1A,此時點M為AB的中點. 空間中線線、線面位置關(guān)系的證明 訓(xùn)練提示:(1)立體幾何中,要證線線垂直,常常先證線面垂直,再用線垂直于面的性質(zhì)易得線垂直于線.要證線平行于面,只需先證線平行于線,再用線平行于面的判定定理易得或先證直線所在的平面與平面平行,即得線面平行. (2)證明立體幾何問題,要緊密結(jié)合圖形,有時要利用平面幾何的相關(guān)知識,因此需要多畫出一些圖形輔助使用. 3. (xx山西大同三模)如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD,點E為AB的中點. (1)求證:BD1∥平面A1DE;

5、(2)求證:D1E⊥A1D. 證明: (1)四邊形ADD1A1為正方形,連接AD1交A1D于O,則O是AD1的中點,點E為AB的中點,連接OE,所以EO為△ABD1的中位線, 所以EO∥BD1. 又因為BD1?平面A1DE,OE?平面A1DE, 所以BD1∥平面A1DE. (2)正方形ADD1A1中, A1D⊥AD1, 由已知可得AB⊥平面ADD1A1,A1D?平面ADD1A1, 所以AB⊥A1D,AB∩AD1=A, 所以A1D⊥平面AD1E, 因為D1E?平面AD1E, 所以A1D⊥D1E. 空間中面面位置關(guān)系的證明 訓(xùn)練提示: (1)證明面面平行依據(jù)判定定理

6、,只要找到一個面內(nèi)兩條相交直線與另一個平面平行即可,從而將證明面面平行轉(zhuǎn)化為證明線面平行,再轉(zhuǎn)化為證明線線平行. (2)證明面面垂直常用面面垂直的判定定理,即證明一個面過另一個面的一條垂線,將證明面面垂直轉(zhuǎn)化為證明線面垂直,一般先從現(xiàn)有直線中尋找,若圖中不存在這樣的直線,則借助中線、高線或添加輔助線解決. 4. (xx湖南卷)如圖,直三棱柱ABCA1B1C1的底面是邊長為2的正三角形,E,F分別是BC,CC1的中點. (1)證明:平面AEF⊥平面B1BCC1; (2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐FAEC的體積. (1)證明: 如圖,因為三棱柱ABCA1

7、B1C1是直三棱柱, 所以AE⊥BB1.又E是正三角形ABC的邊BC的中點, 所以AE⊥BC. 因此AE⊥平面B1BCC1. 而AE?平面AEF, 所以平面AEF⊥平面B1BCC1. (2)解:設(shè)AB的中點為D,連接A1D,CD. 因為△ABC是正三角形,所以CD⊥AB. 又三棱柱ABCA1B1C1是直三棱柱,所以CD⊥AA1. 因此CD⊥平面A1ABB1, 于是∠CA1D為直線A1C與平面A1ABB1所成的角. 由題知∠CA1D=45°,所以A1D=CD=AB=. 在Rt△AA1D中,AA1===, 所以FC=AA1=. 故三棱錐FAEC的體積 V=S△AE

8、C×FC =××AE×EC×FC =×× =. 5.(xx北京卷) 如圖,在三棱錐VABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC,且AC=BC=,O,M分別為AB,VA的中點. (1)求證:VB∥平面MOC; (2)求證:平面MOC⊥平面VAB; (3)求三棱錐VABC的體積. (1)證明:因為O,M分別為AB,VA的中點,所以O(shè)M∥VB. 又因為VB?平面MOC, 所以VB∥平面MOC. (2)證明:因為AC=BC,O為AB的中點,所以O(shè)C⊥AB. 又因為平面VAB⊥平面ABC,且OC?平面ABC, 所以O(shè)C⊥平面VAB. 所以平面MOC

9、⊥平面VAB. (3)解:在等腰直角三角形ACB中,AC=BC=, 所以AB=2,OC=1,所以S△VAB=, 又因為OC⊥平面VAB, 所以=OC·S△VAB=. 又因為三棱錐VABC的體積與三棱錐CVAB的體積相等, 所以三棱錐VABC的體積為. 類型一:空間線面位置關(guān)系的綜合 1.(xx甘肅蘭州第二次監(jiān)測)已知正方體ABCDA1B1C1D1的棱長為1,E,F分別為棱AA1與CC1的中點,過直線EF的平面分別與BB1,DD1相交于點M,N,設(shè)BM=x,x∈[0,1]有以下命題: ①平面MENF⊥平面BDD1B1; ②當(dāng)x=時,四邊形MENF的面積最小; ③四邊形M

10、ENF的周長L=f(x),x∈[0,1]是單調(diào)函數(shù); ④四棱錐C1MENF的體積V=g(x)為常函數(shù). 其中正確結(jié)論的序號是    (將正確結(jié)論的序號都填上).? 解析:①連接BD,B1D1,則由正方體性質(zhì)知,EF⊥平面BDD1B1, 所以平面MENF⊥平面BDD1B1,所以①正確. ②連結(jié)MN,因為EF⊥平面BDD1B1, 所以EF⊥MN, 因為四邊形MENF的對角線EF為定值, 所以要使面積最小,則只需MN的長度最小即可,此時當(dāng)M為棱的中點時,即x=時,MN最小,對應(yīng)四邊形MENF的面積最小,故②正確; ③因為EF⊥MN, 所以四邊形MENF是菱形,當(dāng)x∈[0,]時,E

11、M的長度由大變小,當(dāng)x∈[,1]時EM的長度由小變大,所以函數(shù)L=f(x)不單調(diào),故③錯; ④連接C1E,C1M,C1N(圖略),則四棱錐分割為兩個小三棱錐,它們是以C1EF為底,以M,N分別為頂點的兩個小棱錐,因為△C1EF的面積為常數(shù),M,N到平面C1EF的距離是常數(shù),所以四棱錐C1MENF的體積V=g(x)為常函數(shù),所以④正確. 答案:①②④ 2. (xx貴州省適應(yīng)性考試)如圖,在四棱錐PABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2,AD=CD=1,E是線段PB的中點. (1)證明:AC⊥平面PBC; (2)若點P到平面ACE的距

12、離是,求三棱錐PACD的體積. (1) 證明:由平面幾何知識可知 AC=BC=. 在△ABC中,AB2=AC2+BC2, 所以AC⊥BC. 因為PC⊥平面ABCD, 所以AC⊥PC, 又PC∩BC=C, 則AC⊥平面PBC. (2)解:由(1)可知平面ACE⊥平面PBC. 在平面PBC內(nèi)作PH⊥CE,垂足為H,則PH⊥平面ACE, 于是,PH就是點P到平面ACE的距離,即PH=. 設(shè)PC=t,則PB=,CE=PB=, 同時,S△PBC=··t=t,S△PCE=S△PBC=t. 又因為S△PCE=·CE·PH, 有··=t, 解得t=1,即PC=1. 三棱錐

13、PACD的體積V=·S△ACD·PC=. 3. (xx天津卷)如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3, BC=2,AA1=,BB1=2,點E和F分別為BC和A1C的中點. (1)求證:EF∥平面A1B1BA; (2)求證:平面AEA1⊥平面BCB1; (3)求直線A1B1與平面BCB1所成角的大小. (1)證明: 如圖,連接A1B.在△A1BC中,因為E和F分別是BC和A1C的中點,所以EF∥BA1.又因為EF?平面A1B1BA,所以EF∥平面A1B1BA. (2)證明:因為AB=AC,E為BC的中點,所以AE⊥BC.因為AA1⊥平面ABC,BB1∥

14、AA1,所以BB1⊥平面ABC,從而BB1⊥AE.又因為BC∩BB1=B,所以AE⊥平面BCB1,又因為AE?平面AEA1,所以平面AEA1⊥平面BCB1. (3)解:取BB1的中點M和B1C的中點N,連接A1M,A1N,NE.因為N和E分別為B1C和BC的中點,所以NE∥B1B,NE=B1B,故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE.又因為AE⊥平面BCB1,所以A1N⊥平面BCB1,從而∠A1B1N為直線A1B1與平面BCB1所成的角. 在△ABC中,可得AE=2,所以A1N=AE=2. 因為BM∥AA1,BM=AA1, 所以A1M∥AB,A1M=AB, 又

15、由AB⊥BB1,得A1M⊥BB1. 在Rt△A1MB1中,可得A1B1==4. 在Rt△A1NB1中,sin∠A1B1N==, 因此∠A1B1N=30°. 所以,直線A1B1與平面BCB1所成的角為30°. 類型二:立體幾何中的折疊問題 4.(xx江西九江二模)已知梯形ABCD中,BC∥AD,AB=BC=AD=1,且∠ABC=90°,以AC為折痕使得折疊后的圖形中平面DAC⊥平面ABC. (1)求證:DC⊥平面ABC; (2)求四面體ABCD的外接球的體積; (3)在棱AD上是否存在點P,使得AD⊥平面PBC. (1)證明:如圖取AD的中點E,連接CE, △CED

16、是等腰直角三角形, 所以∠ACD=∠ACE+∠ECD=45°+45°=90°, 即DC⊥AC, 因為平面DAC⊥平面ABC, 所以DC⊥平面ABC. (2)解:因為DC⊥平面ABC, 所以DC⊥AB, 又因為AB⊥BC, 所以AB⊥平面DBC, 所以AB⊥DB, 即∠ABD=∠ACD=90°, 所以四面體ABCD的外接球的球心是AD的中點E, 即四面體ABCD的外接球的半徑R=1,故四面體ABCD的外接球的體積為. (3)解:不存在,理由: 若在棱AD上存在點P,使得AD⊥平面PBC, 則AD⊥BC, 又DC⊥平面ABC, 所以DC⊥BC, 所以BC⊥平面A

17、DC, 從而BC⊥AC,這與∠ACB=45°矛盾, 所以在棱AD上不存在點P,使得AD⊥平面PBC. 類型三:立體幾何中的探索性問題 5. 如圖,在四棱錐PABCD中,底面ABCD為梯形,∠ABC=∠BAD=90°, BC=2,AP=AD=AB=,∠PAB=∠PAD=α. (1)試在棱PA上確定一個點E,使得PC∥平面BDE,并求出此時的值; (2)當(dāng)α=60°時,求證:CD⊥平面PBD. (1)解: 連接AC,BD交于點F,在平面PCA中作EF∥PC交PA于E, 因為PC?平面BDE, EF?平面BDE, 所以PC∥平面BDE, 因為AD∥BC, 所以==,

18、 因為EF∥PC, 所以=, 此時,===. (2)證明:取BC的中點G,連接DG,則四邊形ABGD為正方形 連接AG,交BD于點O,連接PO, AP=AD=AB,∠PAB=∠PAD=60°, 所以△PAB和△PAD都是等邊三角形, 因此PA=PB=PD, 又因為OD=OB, 所以△POB≌△POD, 得∠POB=∠POD=90°, 同理得△POA≌△POB,∠POA=90°, 所以PO⊥平面ABC. 所以PO⊥CD, ∠ABC=∠BAD=90°,BC=2AD=2AB=2, 可得BD=2,CD=2, 所以BD2+CD2=BC2, 所以BD⊥CD, 又BD∩

19、PO=O, 所以CD⊥平面PBD. 類型四:立體幾何中的距離問題 6. (xx東北三校第二次聯(lián)考)如圖,在直三棱柱ABCA1B1C1中,底面△ABC為等邊三角形,AB=4,AA1=5,點M是BB1中點. (1)求證:平面A1MC⊥平面AA1C1C; (2)求點A到平面A1MC的距離. (1)證明:連接AC1,與A1C交于E.連接ME. 因為直三棱柱ABCA1B1C1, 點M是BB1中點, 所以MA1=MA=MC1=MC=. 因為點E是AC1,A1C的中點, 所以ME⊥AC1,ME⊥A1C, 且AC1∩A1C=E, 從而ME⊥平面AA1C1C, 因為ME?平面A1MC, 所以平面A1MC⊥平面AA1C1C. (2)解:過點A作AH⊥A1C于點H, 由(1)知平面A1MC⊥平面AA1C1C,平面A1MC∩平面AA1C1C=A1C, 而AH⊥平面AA1C1C, 所以AH即為點A到平面A1MC的距離. 在△A1AC中,∠A1AC=90°, A1A=5,AC=4, 所以A1C=, 所以AH==, 即點A到平面A1MC的距離為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲