2022年高二數(shù)學(xué)3月月考試題 理(V)
《2022年高二數(shù)學(xué)3月月考試題 理(V)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高二數(shù)學(xué)3月月考試題 理(V)(11頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高二數(shù)學(xué)3月月考試題 理(V) xx.3 本試卷共4頁,分第I卷(選擇題)和第II卷(非選擇題)兩部分.共150分.考試時(shí)間120分鐘. 注意事項(xiàng): 1.答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的學(xué)校、姓名、準(zhǔn)考證號(hào)填寫在規(guī)定的位置上。 2.第I卷每小題選出答案后,用2B鉛筆把答題號(hào)上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào)。 一、選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。 1.曲線y=x3在原點(diǎn)處的切線 ( ) A.不存在
2、 B.有1條,其方程為y=0 C.有1條,其方程為x=0 D.有2條,它們的方程分別為y=0,x=0 2.曲線y=e-2x+1在點(diǎn)(0,2)處的切線與直線y=0和y=x圍成的三角形的面積為 ( ) A. B. C. D.1 3.函數(shù)f(x)=x2-2ln x的單調(diào)遞減區(qū)間是( ) A.(0,1) B.(1,+∞) C.(-∞,1) D.(-1,1) 4.若函數(shù)f(x)=kx-ln x在區(qū)間(1,+∞)單調(diào)遞增,則k的取值范圍是( ) A.(-∞,-2] B.(-∞,-1] C.[2,+∞) D.[1
3、, +∞)
5.函數(shù)y=xex的最小值是 ( )
A.-1 B.-e C.- D.不存在
6.函數(shù)f(x)=-,a<b<1,則 ( )
A.f(a)=f(b) B.f(a)<f(b)
C.f(a)>f(b) D.f(a),f(b)大小關(guān)系不能確定
7.對(duì)于在R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-a)f′(x)≥0,則必有 ( )
A.f(x)≥f(a) B.f(x)≤f(a)
C.f(x)>f(a) D.f(x) 4、+∞)上是減函數(shù),則m的取值范圍是 ( )
A.(-∞,0) B.(-∞,1)
C.(-∞,0] D.(-∞,1]
9.做一個(gè)無蓋的圓柱形水桶,若要使其體積是27π,且用料最省,則圓柱的底面半徑為 ( )
A.3 B.4 C.6 D.5
10.已知函數(shù)f(x)=x3+bx2+cx的圖象如圖所示,則x+x等于 ( )
A. B.
C. D.
第II卷(非選擇題 共100分)
注意事項(xiàng):
將第II卷答案用0.5mm的黑色簽字筆答在答題卡的相應(yīng)位置上.
二、填空題:本大題共5小題 5、,每小題5分,共25分.
11.已知函數(shù)f(x)=x3-4x2+5x-4.求曲線f(x)在點(diǎn)(2,f(2))處的切線方程________.
12.函數(shù)f(x)=x2-2ln x的單調(diào)遞減區(qū)間是________.
13.已知函數(shù)f(x)=x3-12x+8在區(qū)間[-3,3]上的最大值與最小值分別為M,m,則M-m=________.
14.若曲線y=e-x上點(diǎn)P處的切線平行于直線2x+y+1=0,則點(diǎn)P的坐標(biāo)是________.
15.已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表:
x
-1
0
4
5
f(x)
1
2
2
1
f(x)的 6、導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.下列關(guān)于f(x)的命題:
①函數(shù)f(x)的極大值點(diǎn)為0,4;
②函數(shù)f(x)在區(qū)間[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn).
其中真命題的序號(hào)是________.
三、解答題:本大題共6小題,共75分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
16. (本小題滿分12分)
分別求下列函數(shù)的導(dǎo)數(shù):
(1)y=ex·cos x;(2)y=x;
(3)y=ln.
17. (本小題滿分12分)
已知曲線y=x3+.
7、
(1)求曲線在點(diǎn)P(2,4)處的切線方程;
(2)求曲線過點(diǎn)P(2,4)的切線方程.
18. (本小題滿分12分)
已知函數(shù)f(x)=x-aln x(a∈R).
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.
19. (本小題滿分12分)
已知函數(shù)f(x)=aln x+bx(a,b∈R)在點(diǎn)(1,f(1))處的切線方程為x-2y-2=0.
(1)求a,b的值;
(2)當(dāng)x>1時(shí),f(x)+<0恒成立,求實(shí)數(shù)k的取值范圍.
20. (本小題滿分 8、13分)
已知f(x)=ax2-(a+2)x+ln x.
(1)a=1時(shí),求y=f(x)在(1,f(1))處的切線方程.
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上最小值為-2,求實(shí)數(shù)a的范圍.
21. (本小題滿分14分)
某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克)滿足關(guān)系式y(tǒng)=+10(x-6)2,其中3<x<6,a為常數(shù),已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元千克,試確定銷售價(jià)格x的值,使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大.
9、
桓臺(tái)二中高二模擬考試
數(shù)學(xué)參考答案及評(píng)分說明
一、選擇題:BAADC CACAC
二. 填空題:
11.x-y-4=0 12.(0,1) 13.32 14.(-ln 2,2) 15.①②
三、解答題:
16.解:
(1)y′=(ex)′cos x+ex(cos x)′=excos x-exsin x. …………………………4分
(2)∵y=x3+1+,∴y′=3x2-. …………………………8分
(3)y=ln=ln(1+x2),∴y′=·(1+x2)′=··2x=.
…………………………12分
10、
17.解 (1)∵P(2,4)在曲線y=x3+上,且y′=x2,
∴在點(diǎn)P(2,4)處的切線的斜率為y′|x=2=4.
∴曲線在點(diǎn)P(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.……6分
(2)設(shè)曲線y=x3+與過點(diǎn)P(2,4)的切線相切于點(diǎn)A,則切線的斜率為y′|x=x0=x.
∴切線方程為y-=x(x-x0),即y=x·x-x+.∵點(diǎn)P(2,4)在切線上,∴4=2x-x+,即x-3x+4=0,∴x+x-4x+4=0,
∴x(x0+1)-4(x0+1)(x0-1)=0,∴(x0+1)(x0-2)2=0,解得x0=-1,或x0=2,故所求的切線方程為x- 11、y+2=0,或4x-y-4=0. …………12分
18.解 函數(shù)f(x)的定義域?yàn)?0,+∞),f′(x)=1-.
(1)當(dāng)a=2時(shí),f(x)=x-2ln x,f′(x)=1-(x>0),
因而f(1)=1,f′(1)=-1,
所以曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程為y-1=-(x-1),
即x+y-2=0. ………………………6分
(2)由f′(x)=1-=,x>0知:
①當(dāng)a≤0時(shí),f′(x)>0,函數(shù)f(x)為(0,+∞)上的增函數(shù),函數(shù)f(x)無極值;
②當(dāng)a>0時(shí),由f′ 12、(x)=0,解得x=a.
又當(dāng)x∈(0,a)時(shí),f′(x)<0;當(dāng)x∈(a,+∞)時(shí),f′(x)>0,
從而函數(shù)f(x)在x=a處取得極小值,且極小值為f(a)=a-aln a,無極大值.
綜上,當(dāng)a≤0時(shí),函數(shù)f(x)無極值;當(dāng)a>0時(shí),函數(shù)f(x)在x=a處取得極小值a-aln a,無極大值. ………………………12分
19.解 (1)∵f(x)=aln x+bx,∴f′(x)=+b.
∵直線x-2y-2=0的斜率為,且過點(diǎn)(1,-),
∴即解得a=1,b=-. ………………6分
(2)由(1)得f(x)=ln x-.
當(dāng)x>1時(shí),f(x)+<0恒成立,即ln x 13、-+<0,等價(jià)于k<-xln x.
令g(x)=-xln x,
則g′(x)=x-(ln x+1)=x-1-ln x.
令h(x)=x-1-ln x,則h′(x)=1-=.
當(dāng)x>1時(shí),h′(x)>0,函數(shù)h(x)在(1,+∞)上單調(diào)遞增,故h(x)>h(1)=0.
從而,當(dāng)x>1時(shí),g′(x)>0,
即函數(shù)g(x)在(1,+∞)上單調(diào)遞增,
故g(x)>g(1)=.
因此,當(dāng)x>1時(shí),k<-xln x恒成立,則k≤.
∴所求k的取值范圍是(-∞,].………………………12分
20.解 (1)當(dāng)a=1時(shí),f(x)=x2-3x+ln x,
f′(x)=2x-3+.
因?yàn)閒 14、′(1)=0,f(1)=-2,
所以曲線y=f(x)在點(diǎn)(1,-2)處的切線方程是y=-2. ………………6分
(2)函數(shù)f(x)=ax2-(a+2)x+ln x的定義域是(0,+∞).
當(dāng)a>0時(shí),f′(x)=2ax-(a+2)+
=,
令f′(x)=
==0,所以x=或x=.
當(dāng)0<≤1,即a≥1時(shí),f(x)在[1,e]上單調(diào)遞增,
所以f(x)在[1,e]上的最小值是f(1)=-2;
當(dāng)1<<e時(shí),f(x)在[1,e]上的最小值f <f(1)=-2,不合題意;
當(dāng)≥e時(shí),f(x)在[1,e]上單調(diào)遞減,此時(shí)f(x)在[1,e]上的最小值f(e)<f(1)=-2,不合題 15、意.
綜上,實(shí)數(shù)a的取值范圍為[1,+∞).………………………13分
21.解: (1)因?yàn)閤=5時(shí),y=11,所以+10=11,a=2.
(2)由(1)知,該商品每日的銷售量y=+10(x-6)2.
所以商場(chǎng)每日銷售該商品所獲得的利潤(rùn)
f(x)=(x-3)[+10(x-6)2]
=2+10(x-3)(x-6)2,3<x<6. 高二理科數(shù)學(xué)參考答案及評(píng)分說明
一、選擇題:BAADC CACAC
三. 填空題:
11.x-y-4=0 12.(0,1) 13.32 14.(-ln 2,2) 15.①②
三、解答題:
16.解:
(1)y′=(e 16、x)′cos x+ex(cos x)′=excos x-exsin x. …………………………4分
(2)∵y=x3+1+,∴y′=3x2-. …………………………8分
(3)y=ln=ln(1+x2),∴y′=·(1+x2)′=··2x=.
…………………………12分
17.解 (1)∵P(2,4)在曲線y=x3+上,且y′=x2,
∴在點(diǎn)P(2,4)處的切線的斜率為y′|x=2=4.
∴曲線在點(diǎn)P(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.……6分
(2)設(shè)曲線y=x3+與過點(diǎn)P(2,4)的切線相切于點(diǎn)A,則切線的斜率 17、為y′|x=x0=x.
∴切線方程為y-=x(x-x0),即y=x·x-x+.∵點(diǎn)P(2,4)在切線上,∴4=2x-x+,即x-3x+4=0,∴x+x-4x+4=0,
∴x(x0+1)-4(x0+1)(x0-1)=0,∴(x0+1)(x0-2)2=0,解得x0=-1,或x0=2,故所求的切線方程為x-y+2=0,或4x-y-4=0. …………12分
18.解 函數(shù)f(x)的定義域?yàn)?0,+∞),f′(x)=1-.
(1)當(dāng)a=2時(shí),f(x)=x-2ln x,f′(x)=1-(x>0),
因而f(1)=1,f′(1)=-1,
所以曲線y=f(x)在點(diǎn)A(1,f 18、(1))處的切線方程為y-1=-(x-1),
即x+y-2=0. ………………………6分
(2)由f′(x)=1-=,x>0知:
①當(dāng)a≤0時(shí),f′(x)>0,函數(shù)f(x)為(0,+∞)上的增函數(shù),函數(shù)f(x)無極值;
②當(dāng)a>0時(shí),由f′(x)=0,解得x=a.
又當(dāng)x∈(0,a)時(shí),f′(x)<0;當(dāng)x∈(a,+∞)時(shí),f′(x)>0,
從而函數(shù)f(x)在x=a處取得極小值,且極小值為f(a)=a-aln a,無極大值.
綜上,當(dāng)a≤0時(shí),函數(shù)f(x)無極值;當(dāng)a>0時(shí),函數(shù)f(x)在x=a處取得極小值a-aln a, 19、無極大值. ………………………12分
19.解 (1)∵f(x)=aln x+bx,∴f′(x)=+b.
∵直線x-2y-2=0的斜率為,且過點(diǎn)(1,-),
∴即解得a=1,b=-. ………………6分
(2)由(1)得f(x)=ln x-.
當(dāng)x>1時(shí),f(x)+<0恒成立,即ln x-+<0,等價(jià)于k<-xln x.
令g(x)=-xln x,
則g′(x)=x-(ln x+1)=x-1-ln x.
令h(x)=x-1-ln x,則h′(x)=1-=.
當(dāng)x>1時(shí),h′(x)>0,函數(shù)h(x)在(1,+∞)上單調(diào)遞增,故h(x)>h(1)=0.
從而,當(dāng)x>1時(shí) 20、,g′(x)>0,
即函數(shù)g(x)在(1,+∞)上單調(diào)遞增,
故g(x)>g(1)=.
因此,當(dāng)x>1時(shí),k<-xln x恒成立,則k≤.
∴所求k的取值范圍是(-∞,].………………………12分
20.解 (1)當(dāng)a=1時(shí),f(x)=x2-3x+ln x,
f′(x)=2x-3+.
因?yàn)閒′(1)=0,f(1)=-2,
所以曲線y=f(x)在點(diǎn)(1,-2)處的切線方程是y=-2. ………………6分
(2)函數(shù)f(x)=ax2-(a+2)x+ln x的定義域是(0,+∞).
當(dāng)a>0時(shí),f′(x)=2ax-(a+2)+
=,
令f′(x)=
==0,所以x=或x=.
21、
當(dāng)0<≤1,即a≥1時(shí),f(x)在[1,e]上單調(diào)遞增,
所以f(x)在[1,e]上的最小值是f(1)=-2;
當(dāng)1<<e時(shí),f(x)在[1,e]上的最小值f <f(1)=-2,不合題意;
當(dāng)≥e時(shí),f(x)在[1,e]上單調(diào)遞減,此時(shí)f(x)在[1,e]上的最小值f(e)<f(1)=-2,不合題意.
綜上,實(shí)數(shù)a的取值范圍為[1,+∞).………………………13分
21.解: (1)因?yàn)閤=5時(shí),y=11,所以+10=11,a=2.
(2)由(1)知,該商品每日的銷售量y=+10(x-6)2.
所以商場(chǎng)每日銷售該商品所獲得的利潤(rùn)
f(x)=(x-3)[+10(x-6)2] 22、
=2+10(x-3)(x-6)2,3<x<6.
從而,f′(x)=10[(x-6)2+2(x-3)(x-6)]
=30(x-4)(x-6).
于是,當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x
(3,4)
4
(4,6)
f′(x)
+
0
-
f(x)
↗
極大值42
↘
由上表可得,x=4是函數(shù)f(x)在區(qū)間(3,6)內(nèi)的極大值點(diǎn),也是最大值點(diǎn).
所以,當(dāng)x=4時(shí),函數(shù)f(x)取得最大值,且最大值等于42.
答:當(dāng)銷售價(jià)格為4元千克時(shí),商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大.
從而,f′(x)=10[(x-6)2+2(x-3)(x-6)]
=30(x-4)(x-6).
于是,當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x
(3,4)
4
(4,6)
f′(x)
+
0
-
f(x)
↗
極大值42
↘
由上表可得,x=4是函數(shù)f(x)在區(qū)間(3,6)內(nèi)的極大值點(diǎn),也是最大值點(diǎn).
所以,當(dāng)x=4時(shí),函數(shù)f(x)取得最大值,且最大值等于42.
答:當(dāng)銷售價(jià)格為4元千克時(shí),商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。