2022年高三數(shù)學(xué)第一次聯(lián)考試題 文(含解析)新人教A版

上傳人:xt****7 文檔編號:105322485 上傳時間:2022-06-11 格式:DOC 頁數(shù):8 大?。?18.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高三數(shù)學(xué)第一次聯(lián)考試題 文(含解析)新人教A版_第1頁
第1頁 / 共8頁
2022年高三數(shù)學(xué)第一次聯(lián)考試題 文(含解析)新人教A版_第2頁
第2頁 / 共8頁
2022年高三數(shù)學(xué)第一次聯(lián)考試題 文(含解析)新人教A版_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué)第一次聯(lián)考試題 文(含解析)新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)第一次聯(lián)考試題 文(含解析)新人教A版(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué)第一次聯(lián)考試題 文(含解析)新人教A版 本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分。滿分為150分,考試用時為120分鐘. 第Ⅰ卷(選擇題,共50分) 【試卷綜析】試題比較平穩(wěn),基本符合高考復(fù)習(xí)的特點,穩(wěn)中有變,變中求新,適當(dāng)調(diào)整了試卷難度,體現(xiàn)了穩(wěn)中求進(jìn)的精神.考查的知識涉及到函數(shù)、三角函數(shù)、數(shù)列、導(dǎo)數(shù)等幾章知識,重視學(xué)科基礎(chǔ)知識和基本技能的考察,同時側(cè)重考察了學(xué)生的學(xué)習(xí)方法和思維能力的考察,這套試題以它的知識性、思辨性、靈活性,基礎(chǔ)性充分體現(xiàn)了考素質(zhì),考基礎(chǔ),考方法,考潛能的檢測功能.試題中無偏題,怪題,起到了引導(dǎo)高中數(shù)學(xué)向全面培養(yǎng)學(xué)生數(shù)學(xué)素質(zhì)的方向發(fā)展的作

2、用. 一、選擇題:本大題共10小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的. 【題文】1、已知全集,集合,,則等于(  ) A.   B.   C.     D. 【知識點】交集及其運算. A1 【答案解析】A 解析:由A中的不等式變形得:2x>1=20,解得:x>0,即A=(0,+∞), ∵B=(﹣4,1),∴A∩B=(0,1).故選:A. 【思路點撥】求出A中不等式的解集確定出A,找出A與B的交集即可. 【題文】2、已知為虛數(shù)單位,復(fù)數(shù)的模(  ) A. 1      B.       C.    

3、   D.3 【知識點】復(fù)數(shù)求模. L4 【答案解析】C 解析:∵z=i(2﹣i)=2i+1,∴|z|=,故選:C. 【思路點撥】根據(jù)復(fù)數(shù)的有關(guān)概念直接進(jìn)行計算即可得到結(jié)論. 【題文】3、在等差數(shù)列中,已知,則(  )   A. 7     B. 8      C. 9        D. 10 【知識點】等差數(shù)列的性質(zhì). D2 【答案解析】D 解析:在等差數(shù)列{an}中,∵a1+a7=10,∴a3+a5=a1+2d+a1+4d=a1+(a1+6d) =a1+a7=10.故選:D. 【思路點撥】在等差數(shù)列{an}中,由a1+a7=10,能求出a3+a5的值. 【

4、題文】4、設(shè)是兩個非零向量,則“”是“夾角為銳角”的(  ) A.充分不必要條件      B.必要不充分條件 C.充分必要條件       D.既不充分也不必要條件 【知識點】數(shù)量積的符號與兩個向量的夾角范圍的關(guān)系.充分條件;必要條件. A2 F3 【答案解析】B 解析:當(dāng) >0時,與的夾角<>可能為銳角,也可能為零角,故充分性不成立;當(dāng)與的夾角<>為銳角時,>0一定成立,故必要性成立.綜上,>0是與的夾角<>為銳角的必要而不充分條件,故選B. 【思路點撥】先看當(dāng) >0時,能否推出與的夾角<>是否為銳角,再看當(dāng)與的夾角<>為銳角時,>0是否一定成立,然后根據(jù)充分條件、必要

5、條件的定義進(jìn)行判斷. 【題文】5、在“魅力咸陽中學(xué)生歌手大賽”比賽現(xiàn)場上七位評委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計圖如圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為(  ) A.5和1.6   B.85和1.6 C. 85和0.4   D. 5和0.4 【知識點】莖葉圖;眾數(shù)、中位數(shù)、平均數(shù). I2 【答案解析】B 解析:根據(jù)題意可得:評委為某選手打出的分?jǐn)?shù)還剩84,84,84,86,87, 所以所剩數(shù)據(jù)的平均數(shù)為=85,所剩數(shù)據(jù)的方差為[(84﹣85)2+(84﹣85)2+(86﹣85)2+(84﹣85)2+(87﹣85)2]=1.6.故選B. 【思

6、路點撥】根據(jù)均值與方差的計算公式,分別計算出所剩數(shù)據(jù)的平均數(shù)和方差分即可. 【題文】6、如果直線與平面滿足:那么必有( ) A. B. C. D. 【知識點】空間中直線與平面之間的位置關(guān)系. G3 G4 G5 【答案解析】A 解析:∵m?α和m⊥γ?α⊥γ,∵l=β∩γ,l?γ.∴l(xiāng)⊥m,故選A. 【思路點撥】m?α和m⊥γ?α⊥γ,l=β∩γ,l?γ.然后推出l⊥m,得到結(jié)果. 【題文】2 4 1 正視圖 俯視圖 側(cè)視圖 7、如圖所示,某幾何體的正視圖(主視圖),側(cè)視圖(左視圖) 和俯視圖分別是等腰梯形,等腰直角三角形和長方

7、形,則該 幾何體體積為(  ) A. B. C. D. 【知識點】由三視圖求面積、體積. G2 【答案解析】A 解析:由三視圖知幾何體是直三棱柱削去兩個相同的三棱錐, 由側(cè)視圖得三棱柱的底面為直角邊長為1的等腰直角三角形,三棱柱側(cè)棱長為4, ∴三棱柱的體積為=2,由正視圖與俯視圖知兩個三棱錐的高為1,∴三棱錐的體積為××1×1×1=,∴幾何體的體積V=2﹣2×=.故選A. 【思路點撥】由三視圖知幾何體是直三棱柱削去兩個相同的三棱錐,根據(jù)側(cè)視圖得三棱柱的底面為直角邊長為1的等腰直角三角形,三棱柱側(cè)棱長為4. 【題文】8、定義運算“”

8、為:兩個實數(shù)的“”運算原理如圖所示,若輸人, 則輸出(  ) A.-2 B.0 C、2 D.4 【知識點】程序框圖. L1 【答案解析】D 解析:由程序框圖知,算法的功能是求P=的值,∵a=2cos=2cos=1<b=2,∴P=2×(1+1)=4. 故選:D. 【思路點撥】算法的功能是求P=的值,利用三角誘導(dǎo)公式求得a、b的值,代入計算可得答案. 【題文】9、在長為12 厘米的線段上任取一點,現(xiàn)作一矩形,鄰邊長分別等 于線段的長,則該矩形面積大于20平方厘米的概率為(  ) A. B. C. D. 【知識點

9、】幾何概型. K3 【答案解析】C 解析:設(shè)AC=x,則BC=12﹣x,矩形的面積S=x(12﹣x)>20 ∴x2﹣12x+20<0,∴2<x<10 由幾何概率的求解公式可得,矩形面積大于20cm2的概率P==,故選C 【思路點撥】設(shè)AC=x,則BC=12﹣x,由矩形的面積S=x(12﹣x)>20可求x的范圍,利用幾何概率的求解公式可求結(jié)論. 【題文】10、如圖,是函數(shù)圖像上一點,曲線在點處的切線交軸于點,軸,垂足為 若的面積為,則 與滿足關(guān)系式(  ) A. B. C. D.

10、 【知識點】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)研究曲線上某點切線方程. B12 【答案解析】B 解析:設(shè)A的坐標(biāo)為(a,0),由導(dǎo)數(shù)的幾何意義得: f'(x0)為曲線y=f(x)在x=x0處切線的斜率, 故P點處的切線方程為y﹣f(x0)=f'(x0)(x﹣x0), 令y=0,則0﹣f(x0)=f'(x0)(x﹣x0),即x=x0﹣,即a=x0﹣, 又△PAB的面積為,∴AB?PB=,即(x0﹣a)?f(x0)=1, ∴?f(x0)=1即f'(x0)=[f(x0)]2,故選B. 【思路點撥】根據(jù)導(dǎo)數(shù)的幾何意義:f'(x0)為曲線y=f(x)在x=x0處切線的斜率,寫出切線

11、方程,令y=0,求出A點的坐標(biāo),分別求出AB,PB長,運用三角形的面積公式,化簡即可. 第II卷(非選擇題,共100分) 二、填空題:本大題共4小題,每小題5分,共20分,其中14~15題是選做題,考生只需選做其中一題,兩題全答的,只以第14小題計分. 【題文】11.函數(shù),則___ 【知識點】分段函數(shù)的函數(shù)值. B1 【答案解析】 解析:, 故答案為: 【思路點撥】先求,,故代入x>0時的解析式;求出=﹣2,,再求值即可. 【題文】12. 若目標(biāo)函數(shù)在約束條件下僅在點處取得最小值,則實數(shù)的取值范圍是 . 【知識點】簡單線性規(guī)劃. E5 【答案解

12、析】(﹣4,2). 解析:作出不等式對應(yīng)的平面區(qū)域,由z=kx+2y得y=﹣x+, 要使目標(biāo)函數(shù)z=kx+2y僅在點B(1,1)處取得最小值,則陰影部分區(qū)域在直線z=kx+2y的右上方,∴目標(biāo)函數(shù)的斜率﹣大于x+y=2的斜率且小于直線2x﹣y=1的斜率, 即﹣1<﹣<2,解得﹣4<k<2,即實數(shù)k的取值范圍為(﹣4,2),故答案為:(﹣4,2). 【思路點撥】作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,確定目標(biāo)取最優(yōu)解的條件,即可求出k的取值范圍. 【題文】13. 已知,,且,則 . 【知識點】兩角和與差的余弦函數(shù);同角三角函數(shù)間的基本關(guān)系.C5 C2 【答案解析

13、】 解析:因為cosα=,cos(α﹣β)=,且0, ∴α﹣β>0,所以sinα==, α﹣β∈(0,),sin(α﹣β)==, cosβ=cos[(α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)== 故答案為:. 【思路點撥】通過α、β的范圍,求出α﹣β的范圍,然后求出sinα,sin(α﹣β)的值,即可求解cosβ. 【題文】14.(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中圓的圓心到直線的距離是 【知識點】簡單曲線的極坐標(biāo)方程. N3 【答案解析】1 解析:∵圓ρ=4cosθ,∴ρ2=4ρcosθ. 化為普通方程為x2+y2=4x,即(x﹣2

14、)2+y2=4,∴圓心的坐標(biāo)為(2,0). ∵直線θ=(ρ∈R),∴直線的方程為y=x,即x﹣y=0. ∴圓心(2,0)到直線x﹣y=0的距離=1.故答案為:1. 【思路點撥】先將極坐標(biāo)方程化為普通方程,可求出圓心的坐標(biāo),再利用點到直線的距離公式即可求出答案 【題文】15.(幾何證明選講)如圖,點B在⊙O上, M為直徑AC上一點, BM的延長線交⊙O于N, ,若⊙O的半徑為,OA=OM , 則MN的長為 【知識點】與圓有關(guān)的比例線段. N1 【答案解析】2 解析:∵∠BNA=45°,圓心角AOB和圓周角ANB對應(yīng)著相同的一段弧, ∴∠AOB=90°,

15、∵⊙O的半徑為2,OA=OM,∴OM=2, 在直角三角形中BM==4,∴根據(jù)圓內(nèi)兩條相交弦定理有4MN=(2+2)(2﹣2), ∴MN=2, 故答案為:2 【思路點撥】根據(jù)圓心角AOB和圓周角ANB對應(yīng)著相同的一段弧,得到角AOB是一個直角,根據(jù)所給的半徑的長度和OA,OM之間的關(guān)系,求出OM的長和BM的長,根據(jù)圓的相交弦定理做出結(jié)果. 三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明、證明過程或演算步驟. 【題文】16.(本題滿分12分)已知向量,,設(shè)函數(shù).(Ⅰ)求函數(shù)單調(diào)增區(qū)間; (Ⅱ)若,求函數(shù)的最值,并指出取得最值時的取值. 【知識點】平面向量數(shù)量積的運算;三角

16、函數(shù)中的恒等變換應(yīng)用. F3 C7 【答案解析】(Ⅰ),(k∈Z);(Ⅱ)f(x)取得最小值0,此時, f(x)取得最大值,此時. 解析:(Ⅰ)∵ = 當(dāng),k∈Z, 即,k∈Z, 即,k∈Z時,函數(shù)f(x)單調(diào)遞增, ∴函數(shù)f(x)的單調(diào)遞增區(qū)間是,(k∈Z); (Ⅱ)∵f(x)=sin(2x+)+, 當(dāng)時,, ∴, ∴當(dāng)時,f(x)取得最小值0,此時2x+=﹣,∴, ∴當(dāng)時,f(x)取得最大值,此時2x+=,∴. 【思路點撥】(Ⅰ)利用向量的數(shù)量積求出f(x)的解析式,再利用三角函數(shù)的圖象與性質(zhì)求出單調(diào)區(qū)間; (Ⅱ)由三角函數(shù)的圖象與性質(zhì),結(jié)合區(qū)間x∈[﹣

17、,],求函數(shù)f(x)的最值以及對應(yīng)x的值. 【題文】17、(本題滿分12分)某小區(qū)在一次對20歲以上居民節(jié)能意識的問卷調(diào)查中,隨機(jī)抽取了100份問卷進(jìn)行統(tǒng)計,得到相關(guān)的數(shù)據(jù)如下表: 節(jié)能意識弱 節(jié)能意識強(qiáng) 總計 20至50歲 45 9 54 大于50歲 10 36 46 總計 55 45 100 (1)由表中數(shù)據(jù)直觀分析,節(jié)能意識強(qiáng)弱是否與人的年齡有關(guān)? (2)若全小區(qū)節(jié)能意識強(qiáng)的人共有350人,則估計這350人中,年齡大于50歲的有多少人? (3)按年齡分層抽樣,從節(jié)能意識強(qiáng)的居民中抽5人,再是這5人中任取2人,求恰有1人年齡在20至50歲的概率。

18、 【知識點】用樣本的頻率分布估計總體分布;抽樣方法;等可能事件的概率.I2 I1 K1 【答案解析】(1) 節(jié)能意識強(qiáng)弱與年齡有關(guān);(2)280人;(3) 解析:(1)因為20至50歲的54人有9人節(jié)能意識強(qiáng),大于50歲的46人有36人節(jié)能意識強(qiáng),與相差較大,所以節(jié)能意識強(qiáng)弱與年齡有關(guān) (2)由數(shù)據(jù)可估計在節(jié)能意識強(qiáng)的人中,年齡大于50歲的概率約為 ∴年齡大于50歲的約有(人) (3)抽取節(jié)能意識強(qiáng)的5人中,年齡在20至50歲的(人), 年齡大于50歲的5﹣1=4人,記這5人分別為a,B1,B2,B3,B4. 從這5人中任取2人,共有10種不同取法:(a,B1),(a,B

19、2),(a,B3),(a,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4), 設(shè)A表示隨機(jī)事件“這5人中任取2人,恰有1人年齡在20至50歲”, 則A中的基本事件有4種:(a,B1),(a,B2),(a,B3),(a,B4) 故所求概率為 . 【思路點撥】(1)利用獨立性檢驗的基本思想,只要在每個年齡段計算它們節(jié)能意識強(qiáng)的概率,若差距較大說明與年齡有關(guān),也可利用|ad﹣bc|的值的大小來直觀判斷; (2)先利用統(tǒng)計數(shù)據(jù)計算在節(jié)能意識強(qiáng)的人中,年齡大于50歲的概率,再由總體乘以概率即可得總體中年齡大于50歲的有多少人; (3)先確

20、定抽樣比,即每層中應(yīng)抽取,故再抽到的5人中,一人年齡小于50,4人年齡大于50,從中取兩個,求恰有1人年齡在20至50歲的概率為古典概型,利用古典概型的概率計算公式,分別利用列舉法計數(shù)即可得所求概率. 【題文】18、(本題滿分14分)如圖,在四棱錐中,平面,底面是菱形,點O是對角線與的交點,是的中點,. (1)求證:平面; (2)平面平面 (3)當(dāng)四棱錐的體積等于時,求的長. 【知識點】平面與平面垂直的判定; 棱柱、棱錐、棱臺的體積;直線與平面平行的判定. G1 G4 G5 【答案解析】(1)證明:略;(2)證明:略;(3).解析:(1)證

21、明:∵在△PBD中,O、M分別是BD、PD的中點,∴OM是△PBD的中位線,∴OM∥PB,…(1分) ∵OM?平面PBD,PB?平面PBD,…(3分) ∴OM∥平面PAB.…(4分) (2)證明:∵底面ABCD是菱形,∴BD⊥AC,…(5分) ∵PA⊥平面ABCD,BD?平面ABCD,∴BD⊥PA.…(6分) ∵AC?平面PAC,PA?平面PAC,AC∩PA=A,∴BD⊥平面PAC,…(8分) ∵BD?平面PBD, ∴平面PBD⊥平面PAC.…(10分) (3)解:∵底面ABCD是菱形,AB=2,∠BAD=60°, ∴,…(11分) ∵四棱錐P﹣ABCD的高為PA,∴,得…

22、(12分) ∵PA⊥平面ABCD,AB?平面ABCD,∴PA⊥AB.…(13分) 在Rt△PAB中,.…(14分) 【思路點撥】(1)利用三角形中位線的性質(zhì),證明線線平行,從而可得線面平行; (2)先證明BD⊥平面PAC,即可證明平面PBD⊥平面PAC; (3)利用四棱錐P﹣ABCD的體積等于時,求出四棱錐P﹣ABCD的高為PA,利用PA⊥AB,即可求PB的長. 【題文】19、(本題滿分14分)已知等差數(shù)列的公差為, 且, (1)求數(shù)列的通項公式與前項和; (2)將數(shù)列的前項抽去其中一項后,剩下三項按原來順序恰為等比數(shù)列的前3項,記的前項和為, 若存在, 使對任意總有恒成立

23、, 求實數(shù)的取值范圍. 【知識點】等差數(shù)列與等比數(shù)列的綜合;數(shù)列與不等式的綜合.D2 D3 E8 【答案解析】(1);(2)λ>2 . 解析:(1)由a2+a7+a12=﹣6得a7=﹣2,所以a1=4(4分) ∴an=5﹣n,從而(6分) (2)由題意知b1=4,b2=2,b3=1(18分) 設(shè)等比數(shù)列bn的公比為q,則, ∴ ∵ 隨m遞減,∴Tm為遞增數(shù)列,得4≤Tm<8(10分) 又, 故(Sn)max=S4=S5=10,(11分) 若存在m∈N*,使對任意n∈N*總有Sn<Tm+λ 則10<8+λ,得λ>2(14分) 【思路點撥】(1)先利用a2+a7

24、+a12=﹣6以及等差數(shù)列的性質(zhì),求出a7=﹣2,再把公差代入即可求出首項,以及通項公式和前n項和Sn; (2)先由已知求出等比數(shù)列的首項和公比,代入求和公式得Tm,并利用函數(shù)的單調(diào)性求出其范圍;再利用(1)的結(jié)論以及Sn<Tm+λ恒成立,即可求實數(shù)λ的取值范圍. 【題文】20、(本題滿分14分)已知拋物線,過點的直線與拋物線交于兩點,且直線與軸交于點 (1)求證:成等比數(shù)列; (2)設(shè),,試問是否為定值,若是,求出此定值;若不是,請說明理由. 【知識點】直線與圓錐曲線的綜合問題;等比關(guān)系的確定. H8 D3 【答案解析】(1)證明:略;(2)為定值且定值為-1. 解析:

25、(1)證明:設(shè)直線的方程為:, 聯(lián)立方程可得得① 設(shè),,,則,② , 而,∴, 即成等比數(shù)列.--------7分 (2)由,得 ,, 即得:,則 由(1)中②代入得,故為定值且定值為-1.-----14分 【思路點撥】(1)設(shè)直線l的方程為:y=kx+2,將直線的方程代入拋物線的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用弦長公式即可求得|MA|,|MC|、|MB|成等比數(shù)列,從而解決問題. (2)由,得,,,從而利用x1,x2,及k來表示α,β,最后結(jié)合(1)中根系數(shù)的關(guān)系即得故α+β為定值. 【題文】21、(本題滿分14分)設(shè)函數(shù)(),. (1

26、) 若函數(shù)圖象上的點到直線距離的最小值為,求的值; (2) 關(guān)于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍; (3) 對于函數(shù)與定義域上的任意實數(shù),若存在常數(shù),使得和都成立,則稱直線為函數(shù)與的“分界線”.設(shè),,試探究與是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由. 【知識點】兩點間距離公式的應(yīng)用;利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;不等式. B12 E8 【答案解析】(1);(2);(3)與存在“分界線, 且“分界線”方程為:. 解析:(1)因為,所以,令 得:,此時,                   …………2分 則點到直線的距離為, 即,解

27、之得.           …………4分 (2)解法一:不等式的解集中的整數(shù)恰有3個, 等價于恰有三個整數(shù)解,故,      …………6分 令,由且, 所以函數(shù)的一個零點在區(qū)間, 則另一個零點一定在區(qū)間,                 …………8分 故解之得.                 …………10分 解法二:恰有三個整數(shù)解,故,即,…………6分 , 所以,又因為,           …………8分 所以,解之得.           …………10分 (3)設(shè),則. 所以當(dāng)時,;當(dāng)時,. 因此時,取得最小值, 則與的圖象在處有公共點.       …………12分 設(shè)與存在 “分界線”,方程為, 即, 由在恒成立,則在恒成立 . 所以成立, 因此.                          下面證明恒成立. 設(shè),則. 所以當(dāng)時,;當(dāng)時,. 因此時取得最大值,則成立. 故所求“分界線”方程為:.           …………14分 【思路點撥】(1)直接運用點到直線的距離公式,然后求解即可得到答案.(2)關(guān)于由不等式解集整數(shù)的個數(shù),然后求未知量取值范圍的題目,可利用恒等變換,把它轉(zhuǎn)化為求函數(shù)零點的問題,即可求解.(3)屬于新定義的題目,可以用函數(shù)求導(dǎo)數(shù)求最值的方法解答.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲