2022年高三數(shù)學上學期期中試題 理(含解析)新人教版

上傳人:xt****7 文檔編號:105372891 上傳時間:2022-06-11 格式:DOC 頁數(shù):7 大?。?65.52KB
收藏 版權(quán)申訴 舉報 下載
2022年高三數(shù)學上學期期中試題 理(含解析)新人教版_第1頁
第1頁 / 共7頁
2022年高三數(shù)學上學期期中試題 理(含解析)新人教版_第2頁
第2頁 / 共7頁
2022年高三數(shù)學上學期期中試題 理(含解析)新人教版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學上學期期中試題 理(含解析)新人教版》由會員分享,可在線閱讀,更多相關《2022年高三數(shù)學上學期期中試題 理(含解析)新人教版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高三數(shù)學上學期期中試題 理(含解析)新人教版 本試卷是高三理科試卷,以基礎知識和基本技能力載體.突出考查學生分析問題解決問題的能力以及運算能力,試題重點考查:集合,不等式、復數(shù)、向量、導數(shù),函數(shù)模型、數(shù)列、三角函數(shù)的性質(zhì)、三角恒等變換與解三角形、等;考查學生解決實際問題的綜合能力,是份較好的試卷. 【題文】一、選擇題:本大題共10個小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項是符合題目要求的. 【題文】1.設集合,集合,則等于 A. B. C. D. 【知識點】集合及其運算A1 【答案解析】C ={x,={x 所以=,故選C.

2、【思路點撥】先求出集合A,B,再求出結(jié)果。 【題文】2.如果命題“”為真命題,則 A.均為真命題 B.均為假命題 C.中至少有一個為真命題 D.中一個為真命題,一個為假命題 【知識點】命題及其關系A2 【答案解析】B 因為為真命題,則為假命題,所以均為假命題, 故選B。 【思路點撥】根據(jù)邏輯連結(jié)詞求出結(jié)果。 【題文】3.設,則 A. B. C. D. 【知識點】三角函數(shù)的圖象與性質(zhì)C3 【答案解析】B 因為,cos=sin>sin且小于1, 所以,故選B. 【思路點撥】根據(jù)三角函數(shù)的單調(diào)性求出結(jié)果。 【題文】4.若點在函數(shù)的圖象上,則的值為

3、 A. B. C. D. 【知識點】對數(shù)與對數(shù)函數(shù)B7 【答案解析】D ∵點(16,2)在函數(shù)y=logax(a>0且a≠1)的圖象上,∴2=loga16, ∴a2=16,a=4,∴=tan=tan=故選:D. 【思路點撥】由條件求得a的值,再利用誘導公式求得 的值 【題文】5.設數(shù)列是公比為q的等比數(shù)列,則“”是“為遞減數(shù)列”的 A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件 【知識點】等比數(shù)列及等比數(shù)列前n項和D3 【答案解析】D ∵數(shù)列{an}是公比為q的等比數(shù)列,則“0<q<1”,∴當a1<0

4、時,“{an}為遞增數(shù)列”,又∵“0<q<1”是“{an}為遞減數(shù)列”的既不充分也不必要條件,故選:D 【思路點撥】根據(jù)等比數(shù)列 的性質(zhì)可判斷:當a1<0時,“0<q<1”“{an}為遞增數(shù)列”;{an}為遞減數(shù)列”,a1<0時,q>1,根據(jù)充分必要條件的定義可以判斷答案. 【題文】6.給定函數(shù)①,②,③,④,其中在區(qū)間上單調(diào)遞減的函數(shù)序號是 A.①② B.②③ C.③④ D.①④ 【知識點】函數(shù)的單調(diào)性與最值B3 【答案解析】B :①是冪函數(shù),其在(0,+∞)上即第一象限內(nèi)為增函數(shù),故此項不符合要求;②中的函數(shù)是由函數(shù)向左平移1個單位長度得到的,因為原函數(shù)在

5、(0,+∞)內(nèi)為減函數(shù),故此項符合要求;③中的函數(shù)圖象是由函數(shù)y=x-1的圖象保留x軸上方,下方圖象翻折到x軸上方而得到的,故由其圖象可知該項符合要求;④中的函數(shù)圖象為指數(shù)函數(shù),因其底數(shù)大于1,故其在R上單調(diào)遞增,不合題意.故選B. 【思路點撥】本題所給的四個函數(shù)分別是冪函數(shù)型,對數(shù)函數(shù)型,指數(shù)函數(shù)型,含絕對值函數(shù)型,在解答時需要熟悉這些函數(shù)類型的圖象和性質(zhì);① 為增函數(shù),② 為定義域上的減函數(shù),③y=|x-1|有兩個單調(diào)區(qū)間,一增區(qū)間一個減區(qū)間,④y=2x+1為增函數(shù). 【題文】7.設是第二象限角,為其終邊上的一點,且,則等于 A. B. C. D. 【知識點】

6、同角三角函數(shù)的基本關系式與誘導公式C2 【答案解析】D ∵α是第二象限角,P(x,4)為其終邊上的一點,且cosα=x=,x<0,∴x=-3,∴tanα=- ?則tan2α= = 故選:D. 【思路點撥】由條件利用任意角的三角函數(shù)的定義求出tanα的值,再利用二倍角的正切公式求得tan2α的值. 【題文】8.在各項均不為零的等差數(shù)列中,若等于 A. B.0 C.1 D.2 【知識點】等差數(shù)列及等差數(shù)列前n項和D2 【答案解析】A 設公差為d,則an+1=an+d,an-1=an-d,由an+1-an2+an-1=0(n≥2)可得2an-an2=0,解得a

7、n=2(零解舍去),故S2n-1-4n=2×(2n-1)-4n=-2,故選A. 【思路點撥】由等差數(shù)列的性質(zhì)可得an+1+an-1=2an,結(jié)合已知,可求出an,又因為s2n-1=(2n-1)an,故本題可解. 【題文】9.若函數(shù)上既是奇函數(shù)又是增函數(shù),則函數(shù)的圖象是 【知識點】函數(shù)的圖像B8 【答案解析】C ∵函數(shù)f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上是奇函數(shù) 則f(-x)+f(x)=0即(k-1)(ax-a-x)=0則k=1 又∵函數(shù)f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上是增函數(shù)則a>1 則g(x)=loga(x+k)=l

8、oga(x+1)函數(shù)圖象必過原點,且為增函數(shù)故選C 【思路點撥】由函數(shù)f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上既是奇函數(shù),又是增函數(shù),則由復合函數(shù)的性質(zhì),我們可得k=1,a>1,由此不難判斷函數(shù)的圖象. 【題文】10.已知函數(shù)的圖象上存在關于軸對稱的點,則的取值范圍是 A. B. C. D. 【知識點】函數(shù)的單調(diào)性與最值B3 【答案解析】A 由題意可得:存在x0∈(-∞,0),滿足x02+ex0-=(-x0)2+ln(-x0+a), 即ex0- -ln(-x0+a)=0有負根,∵當x趨近于負無窮大時,ex0--ln(-x0+a)也趨近于負無窮

9、大,且函數(shù)h(x)=ex--ln(-x+a)為增函數(shù),∴h(0)=-lna>0, ∴l(xiāng)na<ln,∴0<a<,故答案為:A. 【思路點撥】由題意可得:存在x0∈(-∞,0),滿足x02+ex0-=(-x0)2+ln(-x0+a), 函數(shù)h(x)=ex--ln(-x+a)的圖象和性質(zhì),得到h(0)=-lna>0,繼而得到答案. 【題文】二、填空題:本大題共5個小題,每小題5分,共25分.請把答案填在答題紙的相應位置. 【題文】11.已知,則 ▲ . 【知識點】二倍角公式C6 【答案解析】 因為=-cos,所以cos=-,則 = ,故答案為。 【思路點撥】先根據(jù)誘導公式

10、求出余弦值,再根據(jù)二倍角公式求出結(jié)果。 【題文】12.已知向量的夾角為45°,且 ▲ . 【知識點】平面向量的數(shù)量積及應用F3 【答案解析】3 因為、的夾角為45°,且||=1,|2-|=, 所以42-4?+2=10,即||2-2||-6=0,解得||=3或||=-(舍) 故答案為3. 【思路點撥】將|2-|=平方,然后將夾角與||=1代入得到||的方程,解方程可得. 【題文】13.由曲線,直線軸所圍成的圖形的面積為 ▲ . 【知識點】定積分與微積分基本定理B13 【答案解析】 如圖所示: 聯(lián)立解得,∴M(4,2).由曲線y=,直線y=x-2及y

11、軸所圍成的圖形的面積S=[-(x-2)]dx=(-x2+2x) =. 【思路點撥】利用微積分基本定理即可求出. 【題文】14.數(shù)列的前n項和,則 ▲ . 【知識點】數(shù)列求和D4 【答案解析】-1 ∵數(shù)列{an}的前n項和Sn=log0.1(1+n),∴a10+a11+…+a99=S99-S9 =log0.1(1+99)-log0.1(1+9)=log0.1100-log0.110=-2-(-1)=-1.故答案為:-1. 【思路點撥】由數(shù)列{an}的前n項和Sn=log0.1(1+n),知a10+a11+…+a99=S99-S9,由此能求出結(jié)果. 【題文】15.定義在R上

12、的奇函數(shù)滿足,且在 ,則 ▲ . 【知識點】函數(shù)的奇偶性與周期性B4 【答案解析】 由f(x+4)=f(x),得函數(shù)的周期是4,則f()=f(8-)=f(-), ∵f(x)是奇函數(shù),∴,f(-)=-f()=-×=-, f()=f(8-)=f(-)=-f()=-sin=sin=, 則f()+f()=-=,故答案為:. 【思路點撥】根據(jù)函數(shù)的奇偶性和周期性,以及分段函數(shù)的表達式代入即可得到結(jié)論. 【題文】三、解答題:本大題共6個小題,滿分75分.解答應寫出必要的文字說明、證明過程或演算步驟.請將解答過程寫在答題紙的相應位置. 【題文】16.(本小題滿分12分)

13、在平面直角坐標系中,已知點. (I)求; (II)設實數(shù)t滿足,求t的值. 【知識點】平面向量的數(shù)量積及應用F3 【答案解析】(1)3,2(2)-1 (1)∵A(1,4),B(-2,3),C(2,-1). ∴=(-3,-1),=(1,-5),+=(-2,-6), ∴?=-3×1+(-1)×(-5)=3,|+|==2. (2)∵()⊥,∴=0,即-=-3×2+(-1)×(-1)=-5,=22+(-1)2=5,∴-5-5t=0,∴t=-1. 【思路點撥】(1)利用向量數(shù)量積坐標運算及求模公式即可得出結(jié)論; (2)根據(jù)題意可得:=0,再結(jié)合向量垂直的坐標表示可得關于t的方程,進而

14、解方程即可得到t的值. 【題文】17.(本小題滿分12分) 如圖,在中,已知,點D在BC邊上,且.求角C的大小及邊AB的長. 【知識點】解三角形C8 【答案解析】7 ∵4sin2+4sinAsinB=3, ∴2[1-cos(A-B)+4sinAsinB=3,∴2-2(cosAcosB+sinAsinB)+4sinAsinB=3, ∴cos(A+B)=-,∴cosC=,∴C= .∵cos∠ADB=, ∴cos∠ADC=- ,∴sin∠ADC= ,在△ADC中,由正弦定理可得AD= ?sinC=7∴AB= =7. 【思路點撥】利用二倍角公式,和角的余弦公式,可求C,利用正弦定理、

15、余弦定理求出邊AB的長. 【題文】18.(本小題滿分12分) 已知.函數(shù),若將函數(shù)的圖象向左平移個單位,則得到的圖像,且函數(shù)為偶函數(shù). (I)求函數(shù)的解析式及其單調(diào)增區(qū)間; (II)若,求的值. 【知識點】三角函數(shù)的圖象與性質(zhì)C3 【答案解析】(Ⅰ)f(x)=2sin(2x-)單調(diào)增區(qū)間為[-+kπ,+kπ](Ⅱ) (Ⅰ)f(x)==sinωx-cosωx=2sin(ωx-),∴g(x)=f(x+ ) =2sin[ω(x+ )-]=2sin(ωx-π-), 又∵g(x)是偶函數(shù),∴sin(-ωx+π-)=sin(ωx+π-), ∴sinωxcos(π-)=0對任意x∈R恒成

16、立,∴π-=+kπ,k∈Z, 整理,得ω=2+3k,k∈Z,又0<ω<3,∴ω=2,∴f(x)=2sin(2x-), 令-+2kπ≤2x-≤+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z, ∴函數(shù)f(x)的單調(diào)增區(qū)間為[-+kπ,+kπ],k∈Z. (Ⅱ)由(Ⅰ)知:f()=2sin(2?-)=2sin(α-), 又f()=,∴sin(α-)=,又<α<π,∴0<α-<, ∴cos(α-)=,∴sinα=sin[(α-)+]=sin(α-)cos+cos(α-)sin =×+×=. 【思路點撥】(Ⅰ)由f(x)==sinωx-cosωx=2sin(ωx-),知g(x)=2si

17、n(ωx-π-),由g(x)是偶函數(shù),得f(x)=2sin(2x-),由此能求出函數(shù)f(x)的單調(diào)增區(qū)間. (Ⅱ)由f()=2sin(2?-)=2sin(α- ),f()= ,得sin(α- )=, 從而cos(α-)= ,由此能求出sinα. 【題文】19.(本小題滿分12分) 某工廠為提高生產(chǎn)效益,決定對一條生產(chǎn)線進行升級改造,該生產(chǎn)線升級改造后的生產(chǎn)效益萬元與升級改造的投入萬元之間滿足函數(shù)關系: (其中m為常數(shù)) 若升級改造投入20萬元,可得到生產(chǎn)效益為35.7萬元.試求該生產(chǎn)線升級改造后獲得的最大利潤.(利潤=生產(chǎn)效益投入) (參考數(shù)據(jù):) 【知識點】函數(shù)模型及其應用B

18、10 【答案解析】24.4萬元 由題意可得,35.7=mln20-4+×20+ln10, 解得,m=-1,則y=-lnx-x2+x+ln10,(x>10) 設利潤為f(x)=y-x=-lnx-x2+x+ln10-x=-lnx-x2+x+ln10,(x>10) 易得,f′(x)=--+=,又∵x>10,∴當10<x<50時,f′(x)<0, 當x>50時,f′(x)>0,則x=50時,函數(shù)f(x)有最大值, 即f(50)=-ln50-×(50)2+×50+ln10=24.4(萬元) 答:該生產(chǎn)線升級改造后獲得的最大利潤為24.4萬元. 【思路點撥】由題意,代入(20,35.7

19、)可得35.7=mln20-4+×20+ln10,從而求出m,計算利潤函數(shù),利用求導法求函數(shù)的最大值,從而得到最大利潤. 【題文】20.(本小題滿分13分) 已知首項都是1的數(shù)列滿足 (I)令,求數(shù)列的通項公式; (II)若數(shù)列為各項均為正數(shù)的等比數(shù)列,且,求數(shù)列的前項和. 【知識點】等比數(shù)列 數(shù)列求和D3 D4 【答案解析】(Ⅰ)cn=3n-2(II)Sn=8-(6n+8)×()n. (Ⅰ)由題意得an+1bn=an?bn+1+3bn?bn+1, 兩邊同時除以bnbn+1,得又cn=,∴cn+1-cn=3,又c1==1, ∴數(shù)列{cn}是首項為1,公差為3的等差數(shù)列,∴

20、cn=1+3(n-1)=3n-2,n∈N*. (Ⅱ)設數(shù)列{bn}的公比為q,q>0,∵b32=4b2?b6,∴b12q4=4b12?q6, 整理,得q2=,∴q=,又b1=1,∴bn=()n-1,n∈N*,an=cnbn=(3n-2)×()n-1, ∴Sn=1×()0+4×()+7×()2+…+(3n-2)×()n-1,① ∴Sn=1×+4×()2+7×()3+…+(3n-2)×()n,② ①-②,得:Sn=1+3×+3×()2+…+3×()n-1-(3n-2)×()n =1+3[+()2+…+()n-1]-(3n-2)×()n=1+3[1-()n-1]-(3n-2)×()n

21、=4-(6+3n-2)×()n=4-(3n+4)×()n,∴Sn=8-(6n+8)×()n. 【思路點撥】(Ⅰ)由題意得an+1bn=an?bn+1+3bn?bn+1,從而 ,由此推導出數(shù)列{cn}是首項為1,公差為3的等差數(shù)列,進而求出cn=1+3(n-1)=3n-2,n∈N*. (Ⅱ)設數(shù)列{bn}的公比為q,q>0,由已知得bn=( )n-1,n∈N*,從而an=cnbn=(3n-2)×()n-1,由此利用錯位相減法能求出數(shù)列{an}的前n項和Sn. 【題文】21.(本小題滿分14分) 已知函數(shù). (I)若曲線與曲線在交點處有共同的切線,求的值; (II)若對任意,都有恒成立

22、,求的取值范圍; (III)在(I)的條件下,求證:. 【知識點】導數(shù)的應用B12 【答案解析】(I)(II)a≤-1(III)略 (I)函數(shù)f(x)=alnx的定義域為(0,+∞),f′(x)= ,g′(x)=. 設曲線y=f(x)與曲線g(x)= 交點(x0,y0),由于在交點處有共同的切線,∴=, 解得x0=4a2,a>0.由f(x0)=g(x0)可得alnx0=. 聯(lián)立,解得a=. (II)對任意x∈[1,e],都有f(x)≥-x2+(a+2)x恒成立,化為a(x-lnx)≤x2-2x.(*). 令h(x)=x-lnx,h′(x)=1-= , ∵x∈[1,e],∴

23、h′(x)≥0,∴函數(shù)h(x)單調(diào)遞增,∴h(x)≥h(1)=1.∴(*) 可化為a≤,x∈[1,e].令F(x)=.F′(x)=. ∵x∈[1,e],∴x-1≥0,2(1-lnx)>0,∴當x∈[1,e]時,F(xiàn)′(x)≥0, ∴函數(shù)F(x)在x∈[1,e]上單調(diào)遞增,∴F(x)≥F(1)==-1,∴a≤-1. (III)在(I)的條件下f(x)=lnx.要證明xf(x)>-1.即證明exlnx>xe1-x-2. 令H(x)=exlnx,可得H′(x)=e+elnx=e(1+lnx),令H′(x)>0,解得x∈(,+∞), 此時函數(shù)H(x)單調(diào)遞增;令H′(x)<0,解得x∈(0,

24、),此時函數(shù)H(x)單調(diào)遞減. ∴當x=時,函數(shù)H(x)取得極小值即最小值,H()=-1. 令G(x)=xe1-x-2,可得G′(x)=(1-x)e1-x, 令G′(x)>0,解得0<x<1,此時函數(shù)H(x)單調(diào)遞增; 令G′(x)<0,解得x>1,此時函數(shù)G(x)單調(diào)遞減. ∴當x=1時,函數(shù)G(x)取得極大值即最大值,G(1)=-1. ∴H(x)>G(x),因此xf(x)> -1. 【思路點撥】(I)函數(shù)f(x)=alnx的定義域為(0,+∞),f′(x)= ,g′(x)=. 設曲線y=f(x)與曲線g(x)= 交點(x0,y0),由于在交點處有共同的切線,利用導數(shù)的幾何

25、意義可得= ,a>0.由f(x0)=g(x0)可得alnx0=.聯(lián)立解得即可. (II)對任意x∈[1,e],都有f(x)≥-x2+(a+2)x恒成立,化為a(x-lnx)≤x2-2x.(*)令h(x)=x-lnx,利用導數(shù)研究其單調(diào)性可得h(x)≥h(1)=1.從而(*)可化為a≤,x∈[1,e].令F(x)= ,再利用導數(shù)研究其單調(diào)性極值與最值可得F(x)≥F(1)=-1,即可得出. (III)在(I)的條件下f(x)= lnx.要證明xf(x)> -1.即證明exlnx>xe1-x-2. 分別令H(x)=exlnx,令G(x)=xe1-x-2,利用導數(shù)研究其單調(diào)性極值與最值 即可證明.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲