(浙江專版)2017-2018學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.1 任意角學(xué)案 新人教A版必修4

上傳人:彩*** 文檔編號(hào):105559126 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):10 大小:380.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
(浙江專版)2017-2018學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.1 任意角學(xué)案 新人教A版必修4_第1頁
第1頁 / 共10頁
(浙江專版)2017-2018學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.1 任意角學(xué)案 新人教A版必修4_第2頁
第2頁 / 共10頁
(浙江專版)2017-2018學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.1 任意角學(xué)案 新人教A版必修4_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(浙江專版)2017-2018學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.1 任意角學(xué)案 新人教A版必修4》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專版)2017-2018學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.1 任意角學(xué)案 新人教A版必修4(10頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 1.1.1 任 意 角 預(yù)習(xí)課本P2~5,思考并完成以下問題 (1)角是如何定義的?角的概念推廣后,分類的標(biāo)準(zhǔn)是什么?     (2)象限角的含義是什么?判斷角所在的象限時(shí),要注意哪些問題?  

2、   (3)終邊相同的角一定相等嗎?如何表示終邊相同的角?     1.任意角 (1)角的概念

3、: 角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所成的圖形. (2)角的表示:如圖,OA是角α的始邊,OB是角α的終邊,O是角的頂點(diǎn).角α可記為“角α”或“∠α”或簡記為“α”. (3)角的分類: 名稱 定義 圖示 正角 按逆時(shí)針方向旋轉(zhuǎn)形成的角 負(fù)角 按順時(shí)針方向旋轉(zhuǎn)形成的角 零角 一條射線沒有作任何旋轉(zhuǎn)形成的角 [點(diǎn)睛] 對角的概念的理解的關(guān)鍵是抓住“旋轉(zhuǎn)”二字:①要明確旋轉(zhuǎn)的方向;②要明確旋轉(zhuǎn)量的大??;③要明確射線未作任何旋轉(zhuǎn)時(shí)的位置. 2.象限角 把角放在平面直角坐標(biāo)系中,使角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合

4、,那么,角的終邊在第幾象限,就說這個(gè)角是第幾象限角;如果角的終邊在坐標(biāo)軸上,就認(rèn)為這個(gè)角不屬于任何一個(gè)象限. [點(diǎn)睛] 象限角的條件是:角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合. 3.終邊相同的角 所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個(gè)集合S={β|β=α+k·360°,k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整數(shù)個(gè)周角的和. [點(diǎn)睛] 對終邊相同的角的理解 (1)終邊相同的角不一定相等,但相等的角終邊一定相同; (2)k∈Z,即k為整數(shù)這一條件不可少; (3)終邊相同的角的表示不唯一. 1.判斷下列命題是否正確.(正確的打“√”,錯(cuò)誤的

5、打“×”) (1)-30°是第四象限角.(  ) (2)鈍角是第二象限的角.(  ) (3)終邊相同的角一定相等.(  ) 答案:(1)√ (2)√ (3)× 2.與45°角終邊相同的角是(  ) A.-45°         B.225° C.395° D.-315° 答案:D 3.下列說法正確的是(  ) A.銳角是第一象限角 B.第二象限角是鈍角 C.第一象限角是銳角 D.第四象限角是負(fù)角 答案:A 4.將35°角的終邊按順時(shí)針方向旋轉(zhuǎn)60°所得的角度數(shù)為________,將35°角的終邊按逆時(shí)針方向旋轉(zhuǎn)一周后的角度數(shù)________. 答案:-25° 

6、395° 任意角的概念 [典例] 下列命題正確的是(  ) A.終邊與始邊重合的角是零角 B.終邊和始邊都相同的兩個(gè)角一定相等 C.在90°≤β<180°范圍內(nèi)的角β不一定是鈍角 D.小于90°的角是銳角 [解析] 終邊與始邊重合的角還可能是360°,720°,…,故A錯(cuò);終邊和始邊都相同的兩個(gè)角可能相差360°的整數(shù)倍,如30°與-330°,故B錯(cuò);由于在90°≤β<180°范圍內(nèi)的角β包含90°角,所以不一定是鈍角,C正確;小于90°的角可以是0°,也可以是負(fù)角,故D錯(cuò)誤. [答案] C 理解與角的概念有關(guān)問題的關(guān)鍵 關(guān)鍵在于正確理解象限角與銳角、直角、

7、鈍角、平角、周角等的概念,弄清角的始邊與終邊及旋轉(zhuǎn)方向與大?。硗庑枰莆张袛嘟Y(jié)論正確與否的技巧,判斷結(jié)論正確需要證明,而判斷結(jié)論不正確只需舉一個(gè)反例即可. [活學(xué)活用] 如圖,射線OA繞端點(diǎn)O旋轉(zhuǎn)90°到射線OB的位置,接著再旋轉(zhuǎn)-30°到OC的位置,則∠AOC的度數(shù)為________. 解析:∠AOC=∠AOB+∠BOC=90°+(-30°)=60°. 答案:60° 終邊相同角的表示 [典例] 寫出與75°角終邊相同的角β的集合,并求在360°≤β<1 080°范圍內(nèi)與75°角終邊相同的角. [解] 與75°角終邊相同的角的集合為 S={β|β=k·360°

8、+75°,k∈Z}. 當(dāng)360°≤β<1 080°時(shí),即360°≤k·360°+75°<1 080°, 解得≤k<2.又k∈Z,所以k=1或k=2. 當(dāng)k=1時(shí),β=435°;當(dāng)k=2時(shí),β=795°. 綜上所述,與75°角終邊相同且在360°≤β<1 080°范圍內(nèi)的角為435°角和795°角. 1.終邊落在直線上的角的集合的步驟 (1)寫出在0°~360°范圍內(nèi)相應(yīng)的角; (2)由終邊相同的角的表示方法寫出角的集合; (3)根據(jù)條件能合并一定合并,使結(jié)果簡潔. 2.終邊相同角常用的三個(gè)結(jié)論 (1)終邊相同的角之間相差360°的整數(shù)倍. (2)終邊在同一直線上的角之

9、間相差180°的整數(shù)倍. (3)終邊在相互垂直的兩直線上的角之間相差90°的整數(shù)倍. [活學(xué)活用] 分別寫出終邊在下列各圖所示的直線上的角的集合. 解:(1)在0°~360°范圍內(nèi),終邊在直線y=0上的角有兩個(gè),即0°和180°,因此,所有與0°角終邊相同的角構(gòu)成集合S1={β|β=0°+k·360°,k∈Z},而所有與180°角終邊相同的角構(gòu)成集合S2={β|β=180°+k·360°,k∈Z},于是,終邊在直線y=0上的角的集合為S=S1∪S2={β|β=k·180°,k∈Z}. (2)由圖形易知,在0°~360°范圍內(nèi),終邊在直線y=-x上的角有兩個(gè),即135°和315°,

10、因此,終邊在直線y=-x上的角的集合為S={β|β=135°+k·360°,k∈Z}∪{β|β=315°+k·360,k∈Z}={β|β=135°+k·180°,k∈Z}. 象限角的判斷 [典例] 已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊落在x軸的非負(fù)半軸上,作出下列各角,并指出它們是第幾象限角. (1)-75°;(2)855°;(3)-510°. [解] 作出各角,其對應(yīng)的終邊如圖所示: (1)由圖①可知:-75°是第四象限角. (2)由圖②可知:855°是第二象限角. (3)由圖③可知:-510°是第三象限角. 象限角的判定方法 (1)根據(jù)圖象判定.依據(jù)是終邊相同的角

11、的概念,因?yàn)?°~360°之間的角的終邊與坐標(biāo)系中過原點(diǎn)的射線可建立一一對應(yīng)的關(guān)系. (2)將角轉(zhuǎn)化到0°~360°范圍內(nèi).在直角坐標(biāo)平面內(nèi),在0°~360°范圍內(nèi)沒有兩個(gè)角終邊是相同的. [活學(xué)活用] 若α是第四象限角,則180°-α一定在(  ) A.第一象限       B.第二象限 C.第三象限 D.第四象限 解析:選C ∵α與-α的終邊關(guān)于x軸對稱,且α是第四象限角,∴-α是第一象限角. 而180°-α可看成-α按逆時(shí)針旋轉(zhuǎn)180°得到, ∴180°-α是第三象限角. 角,nα(n∈N*)所在象限的確定 [典例] 已知α是第二象限角,求角所在的象限. [解

12、] 法一:∵α是第二象限角, ∴k·360°+90°<α

13、]在本例條件下,求角2α的終邊的位置. 解:∵α是第二象限角, ∴k·360°+90°<α

14、nα的范圍,再直接轉(zhuǎn)化為終邊相同的角即可.注意不要漏掉nα的終邊在坐標(biāo)軸上的情況. (2)已知角α終邊所在的象限,確定終邊所在的象限,分類討論法要對k的取值分以下幾種情況進(jìn)行討論:k被n整除;k被n除余1;k被n除余2,…,k被n除余n-1.然后方可下結(jié)論.幾何法依據(jù)數(shù)形結(jié)合思想,簡單直觀. 層級(jí)一 學(xué)業(yè)水平達(dá)標(biāo) 1.-215°是(  ) A.第一象限角       B.第二象限角 C.第三象限角 D.第四象限角 解析:選B 由于-215°=-360°+145°,而145°是第二象限角,則-215°也是第二象限角. 2.下面各組角中,終邊相同的是(  ) A.390°,6

15、90° B.-330°,750° C.480°,-420° D.3 000°,-840° 解析:選B ∵-330°=-360°+30°,750°=720°+30°, ∴-330°與750°終邊相同. 3.若α=k·180°+45°,k∈Z,則α所在的象限是(  ) A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限 解析:選A 由題意知α=k·180°+45°,k∈Z, 當(dāng)k=2n+1,n∈Z, α=2n·180°+180°+45° =n·360°+225°,在第三象限, 當(dāng)k=2n,n∈Z, α=2n·180°+45° =n·360°+4

16、5°,在第一象限. ∴α是第一或第三象限的角. 4.終邊在第二象限的角的集合可以表示為(  ) A.{α|90°<α<180°} B.{α|90°+k·180°<α<180°+k·180°,k∈Z} C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z} D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z} 解析:選D 終邊在第二象限的角的集合可表示為{α|90°+k·360°<α<180°+k·360°,k∈Z},而選項(xiàng)D是從順時(shí)針方向來看的,故選項(xiàng)D正確. 5.將-885°化為α+k·360°(0°≤α<360°,k∈Z)的形式是(

17、  ) A.-165°+(-2)×360° B.195°+(-3)×360° C.195°+(-2)×360° D.165°+(-3)×360° 解析:選B -885°=195°+(-3)×360°,0°≤195°<360°,故選B. 6.在下列說法中: ①時(shí)鐘經(jīng)過兩個(gè)小時(shí),時(shí)針轉(zhuǎn)過的角是60°; ②鈍角一定大于銳角; ③射線OA繞端點(diǎn)O按逆時(shí)針旋轉(zhuǎn)一周所成的角是0°; ④-2 000°是第二象限角. 其中錯(cuò)誤說法的序號(hào)為______(錯(cuò)誤說法的序號(hào)都寫上). 解析:①時(shí)鐘經(jīng)過兩個(gè)小時(shí),時(shí)針按順時(shí)針方向旋轉(zhuǎn)60°,因而轉(zhuǎn)過的角為-60°,所以①不正確. ②鈍角α的取值

18、范圍為90°<α<180°,銳角θ的取值范圍為0°<θ<90°,因此鈍角一定大于銳角,所以②正確. ③射線OA按逆時(shí)針旋轉(zhuǎn)一周所成的角是360°,所以③不正確. ④-2 000°=-6×360°+160°與160°終邊相同,是第二象限角,所以④正確. 答案:①③ 7.α滿足180°<α<360°,5α與α有相同的始邊,且又有相同的終邊,那么α=________. 解析:5α=α+k·360°,k∈Z,∴α=k·90°,k∈Z. 又∵180°<α<360°,∴α=270°. 答案:270° 8.若角α=2 016°,則與角α具有相同終邊的最小正角為________,最大負(fù)角為__

19、______. 解析:∵2 016°=5×360°+216°,∴與角α終邊相同的角的集合為{α|α=216°+k·360°,k∈Z},∴最小正角是216°,最大負(fù)角是-144°. 答案:216°?。?44° 9.在0°~360°范圍內(nèi),找出與下列各角終邊相同的角,并指出它們是第幾象限角: (1)549°;(2)-60°;(3)-503°36′. 解:(1)549°=189°+360°,而180°<189°<270°,因此,549°角為第三象限角,且在0°~360°范圍內(nèi),與189°角有相同的終邊. (2)-60°=300°-360°,而270°<300°<360°,因此,-60°角

20、為第四象限角,且在0°~360°范圍內(nèi),與300°角有相同的終邊. (3)-503°36′=216°24′-2×360°,而180°<216°24′<270°,因此,-503°36′角是第三象限角,且在0°~360°范圍內(nèi),與216°24′角有相同的終邊. 10.已知角的集合M={α|α=30°+k·90°,k∈Z},回答下列問題: (1)集合M中大于-360°且小于360°的角是哪幾個(gè)? (2)寫出集合M中的第二象限角β的一般表達(dá)式. 解:(1)令-360°<30°+k·90°<360°,則-

21、且小于360°的角共有8個(gè),分別是-330°,-240°,-150°,-60°,30°,120°,210°,300°. (2)集合M中的第二象限角與120°角的終邊相同, ∴β=120°+k·360°,k∈Z. 層級(jí)二 應(yīng)試能力達(dá)標(biāo) 1.給出下列四個(gè)結(jié)論:①-15°是第四象限角;②185°是第三象限角;③475°是第二象限角;④-350°是第一象限角.其中正確的個(gè)數(shù)為(  ) A.1          B.2 C.3 D.4 解析:選D ①-15°是第四象限角; ②180°<185°<270°是第三象限角; ③475°=360°+115°,而90°<115°<180°,所以

22、475°是第二象限角; ④-350°=-360°+10°是第一象限角, 所以四個(gè)結(jié)論都是正確的. 2.若角2α與240°角的終邊相同,則α=(  ) A.120°+k·360°,k∈Z B.120°+k·180°,k∈Z C.240°+k·360°,k∈Z D.240°+k·180°,k∈Z 解析:選B 角2α與240°角的終邊相同,則2α=240°+k·360°,k∈Z,則α=120°+k·180°,k∈Z.選B. 3.若α與β終邊相同,則α-β的終邊落在(  ) A.x軸的非負(fù)半軸上 B.x軸的非正半軸上 C.y軸的非負(fù)半軸上 D.y軸的非正半軸上 解析:選A 

23、∵α=β+k·360°,k∈Z, ∴α-β=k·360°,k∈Z, ∴其終邊在x軸的非負(fù)半軸上. 4.設(shè)集合M={α|α=45°+k·90°,k∈Z},N={α|α=90°+k·45°,k∈Z},則集合M與N的關(guān)系是(  ) A.M∩N=? B.MN C.NM D.M=N 解析:選C 對于集合M,α=45°+k·90°=45°+2k·45°=(2k+1)·45°,即M={α|α=(2k+1)·45°,k∈Z};對于集合N,α=90°+k·45°=2×45°+k·45°=(k+2)·45°,即N={α|α=(k+2)·45°,k∈Z}={α|α=n·45°,n∈Z}.∵2k+

24、1表示所有的奇數(shù),而n表示所有的整數(shù),∴NM,故選C. 5.從13:00到14:00,時(shí)針轉(zhuǎn)過的角為________,分針轉(zhuǎn)過的角為________. 解析:經(jīng)過一小時(shí),時(shí)針順時(shí)針旋轉(zhuǎn)30°,分針順時(shí)針旋轉(zhuǎn)360°,結(jié)合負(fù)角的定義可知時(shí)針轉(zhuǎn)過的角為-30°,分針轉(zhuǎn)過的角為-360°. 答案:-30°?。?60° 6.已知角2α的終邊在x軸的上方,那么α是第______象限角. 解析:由題意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k∈Z),按照k的奇偶性進(jìn)行討論.當(dāng)k=2n(n∈Z)時(shí),n·360°<α<90°+n·360°(

25、n∈Z),∴α在第一象限;當(dāng)k=2n+1(n∈Z)時(shí),180°+n·360°<α<270°+n·360°(n∈Z),∴α在第三象限.故α是第一或第三象限角. 答案:一或三 7.試寫出終邊在直線y=-x上的角的集合S,并把S中適合不等式-180°≤α<180°的元素α寫出來. 解:終邊在直線y=-x上的角的集合 S={α|α=k·360°+120°,k∈Z}∪{α|α=k·360°+300°,k∈Z}={α|α=k·180°+120°,k∈Z},其中適合不等式-180°≤α<180°的元素α為-60°,120°. 8.如圖,分別寫出適合下列條件的角的集合: (1)終邊落在射線OB上; (2)終邊落在直線OA上; (3)終邊落在陰影區(qū)域內(nèi)(含邊界). 解:(1)終邊落在射線OB上的角的集合為S1={α|α=60°+k·360°,k∈Z}. (2)終邊落在直線OA上的角的集合為 S2={α|α=30°+k·180°,k∈Z}. (3)終邊落在陰影區(qū)域內(nèi)(含邊界)的角的集合為 S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}. 10

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲