《2022年高中數(shù)學(xué)必修四 《任意角的三角函數(shù)》及誘導(dǎo)公式教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué)必修四 《任意角的三角函數(shù)》及誘導(dǎo)公式教案(6頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中數(shù)學(xué)必修四 《任意角的三角函數(shù)》及誘導(dǎo)公式教案
一.【課標(biāo)要求】
1.任意角、弧度
了解任意角的概念和弧度制,能進(jìn)行弧度與角度的互化;
2.三角函數(shù)
(1)借助單位圓理解任意角三角函數(shù)(正弦、余弦、正切)的定義;
(2)借助單位圓中的三角函數(shù)線推導(dǎo)出誘導(dǎo)公式(π/2±α, π±α的正弦、余弦、正切)。
二.【命題走向】
從近幾年的新課程高考考卷來看,試題內(nèi)容主要考察三角函數(shù)的圖形與性質(zhì),但解決這類問題的基礎(chǔ)是任意角的三角函數(shù)及誘導(dǎo)公式,在處理一些復(fù)雜的三角問題時(shí),同角的三角函數(shù)的基本關(guān)系式是解決問題的關(guān)鍵
預(yù)測(cè)209年高考對(duì)本講的考察是:
1.題型是1道選擇題
2、和解答題中小過程;
2.熱點(diǎn)內(nèi)容是三角函數(shù)知識(shí)的綜合應(yīng)用和實(shí)際應(yīng)用,這也是新課標(biāo)教材的熱點(diǎn)內(nèi)容。
三.【要點(diǎn)精講】
1.任意角的概念
角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所成的圖形。一條射線由原來的位置,繞著它的端點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)到終止位置,就形成角。旋轉(zhuǎn)開始時(shí)的射線叫做角的始邊,叫終邊,射線的端點(diǎn)叫做叫的頂點(diǎn)。
為了區(qū)別起見,我們規(guī)定:按逆時(shí)針方向旋轉(zhuǎn)所形成的角叫正角,按順時(shí)針方向旋轉(zhuǎn)所形成的角叫負(fù)角。如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個(gè)零角。
2.終邊相同的角、區(qū)間角與象限角
角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的非負(fù)半軸重合。那么,角的終邊(除
3、端點(diǎn)外)在第幾象限,我們就說這個(gè)角是第幾象限角。要特別注意:如果角的終邊在坐標(biāo)軸上,就認(rèn)為這個(gè)角不屬于任何一個(gè)象限,稱為非象限角。
終邊相同的角是指與某個(gè)角α具有同終邊的所有角,它們彼此相差2kπ(k∈Z),即β∈{β|β=2kπ+α,k∈Z},根據(jù)三角函數(shù)的定義,終邊相同的角的各種三角函數(shù)值都相等。
區(qū)間角是介于兩個(gè)角之間的所有角,如α∈{α|≤α≤}=[,]。
3.弧度制
長度等于半徑長的圓弧所對(duì)的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫)。
角有正負(fù)零角之分,它的弧度數(shù)也應(yīng)該有正負(fù)零之分,如-π,-2π等等,一般地, 正角的弧度數(shù)是一個(gè)正數(shù),負(fù)角的弧度數(shù)是一
4、個(gè)負(fù)數(shù),零角的弧度數(shù)是0,角的正負(fù)主要由角的旋轉(zhuǎn)方向來決定。
角的弧度數(shù)的絕對(duì)值是:,其中,l是圓心角所對(duì)的弧長,是半徑。
角度制與弧度制的換算主要抓住。
弧度與角度互換公式:1rad=°≈57.30°=57°18ˊ、1°=≈0.01745(rad)。
弧長公式:(是圓心角的弧度數(shù)),
扇形面積公式:。
4.三角函數(shù)定義
在的終邊上任取一點(diǎn),它與原點(diǎn)的距離.過作軸的垂線,垂足為,則線段的長度為,線段的長度為.則;;。
a的終邊
P(x,y))
O
x
y
利用單位圓定義任意角的三角函數(shù),設(shè)是一個(gè)任意角,它的終邊與單位圓交于點(diǎn),那么:
(1)叫做的正弦,記做,即;
5、(2)叫做的余弦,記做,即;
(3)叫做的正切,記做,即。
5.三角函數(shù)線
O
x
y
a角的終邊
P
T
M
A
三角函數(shù)線是通過有向線段直觀地表示出角的各種三角函數(shù)值的一種圖示方法。利用三角函數(shù)線在解決比較三角函數(shù)值大小、解三角方程及三角不等式等問題時(shí),十分方便。
以坐標(biāo)原點(diǎn)為圓心,以單位長度1為半徑畫一個(gè)圓,這個(gè)圓就叫做單位圓(注意:這個(gè)單位長度不一定就是1厘米或1米)。當(dāng)角為第一象限角時(shí),則其終邊與單位圓必有一個(gè)交點(diǎn),過點(diǎn)作軸交軸于點(diǎn),根據(jù)三角函數(shù)的定義:;。
我們知道,指標(biāo)坐標(biāo)系內(nèi)點(diǎn)的坐標(biāo)與坐標(biāo)軸的方向有關(guān).當(dāng)角的終邊不在坐標(biāo)軸時(shí),以為始點(diǎn)、為終點(diǎn),規(guī)定:
6、
當(dāng)線段與軸同向時(shí),的方向?yàn)檎?,且有正值;?dāng)線段與軸反向時(shí),的方向?yàn)樨?fù)向,且有正值;其中為點(diǎn)的橫坐標(biāo).這樣,無論那種情況都有
同理,當(dāng)角的終邊不在軸上時(shí),以為始點(diǎn)、為終點(diǎn),
規(guī)定:當(dāng)線段與軸同向時(shí),的方向?yàn)檎颍矣姓?;?dāng)線段與軸反向時(shí),的方向?yàn)樨?fù)向,且有正值;其中為點(diǎn)的橫坐標(biāo)
這樣,無論那種情況都有。像這種被看作帶有方向的線段,叫做有向線段。
如上圖,過點(diǎn)作單位圓的切線,這條切線必然平行于軸,設(shè)它與的終邊交于點(diǎn),請(qǐng)根據(jù)正切函數(shù)的定義與相似三角形的知識(shí),借助有向線段,我們有
我們把這三條與單位圓有關(guān)的有向線段,分別叫做角的正弦線、余弦線、正切線,統(tǒng)稱為三角函數(shù)線。
6.
7、同角三角函數(shù)關(guān)系式
使用這組公式進(jìn)行變形時(shí),經(jīng)常把“切”、“割”用“弦”表示,即化弦法,這是三角變換非常重要的方法
幾個(gè)常用關(guān)系式:sinα+cosα,sinα-cosα,sinα·cosα;(三式之間可以互相表示)
同理可以由sinα-cosα或sinα·cosα推出其余兩式。
②. ③當(dāng)時(shí),有。
7.誘導(dǎo)公式
可用十個(gè)字概括為“奇變偶不變,符號(hào)看象限”。
誘導(dǎo)公式一:,,其中
誘導(dǎo)公式二: ;
誘導(dǎo)公式三: ;
誘導(dǎo)公式四:;
誘導(dǎo)公式五:;
-
sin
-sin
sin
-sin
-sin
s
8、in
cos
cos
cos
-cos
-cos
cos
cos
sin
(1)要化的角的形式為(為常整數(shù));
(2)記憶方法:“函數(shù)名不變,符號(hào)看象限”;
(3)sin(kπ+α)=(-1)ksinα;cos(kπ+α)=(-1)kcosα(k∈Z);
(4);。
四.【典例解析】
題型1:象限角
例1.已知角;(1)在區(qū)間內(nèi)找出所有與角有相同終邊的角;(2)集合,那么兩集合的關(guān)系是什么?
解析:(1)所有與角有相同終邊的角可表示為:,
則令 ,
得
解得
從而或
代回或
(2)因?yàn)楸硎镜氖墙K邊落在四個(gè)象限的平分線上的角的集合;而集合表示終邊
9、落在坐標(biāo)軸或四個(gè)象限平分線上的角的集合,從而:。
點(diǎn)評(píng):(1)從終邊相同的角的表示入手分析問題,先表示出所有與角有相同終邊的角,然后列出一個(gè)關(guān)于的不等式,找出相應(yīng)的整數(shù),代回求出所求解;(2)可對(duì)整數(shù)的奇、偶數(shù)情況展開討論。
例2.若sinθcosθ>0,則θ在( )
A.第一、二象限 B.第一、三象限
C.第一、四象限 D.第二、四象限
解析:答案:B;∵sinθcosθ>0,∴sinθ、cosθ同號(hào)。
當(dāng)sinθ>0,cosθ>0時(shí),θ在第一象限,當(dāng)sinθ<0,cosθ<0時(shí),θ在第三象限,因此,選B。
例3.若A、B
10、是銳角△ABC的兩個(gè)內(nèi)角,則點(diǎn)P(cosB-sinA,sinB-cosA)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
答案:B
解析:∵A、B是銳角三角形的兩個(gè)內(nèi)角,∴A+B>90°,∴B>90°-A,∴cosB<sinA,sinB>cosA,故選B。
例4.已知“是第三象限角,則是第幾象限角?
解法一:因?yàn)槭堑谌笙藿牵裕?
∴,
∴當(dāng)k=3m(m∈Z)時(shí),為第一象限角;
當(dāng)k= 3m+1(m∈Z)時(shí),為第三象限角,
當(dāng)k= 3m+2(m∈Z)時(shí),為第四象限角,
故為第一、三、四象限角。
解法二:把各象限
11、均分3等份,再從x軸的正向的上方起依次將各區(qū)域標(biāo)上I、Ⅱ、Ⅲ、Ⅳ,并依次循環(huán)一周,則原來是第Ⅲ象限的符號(hào)所表示的區(qū)域即為的終邊所在的區(qū)域。
由圖可知,是第一、三、四象限角
點(diǎn)評(píng):已知角的范圍或所在的象限,求所在的象限是??碱}之一,一般解法有直接法和幾何法,其中幾何法具體操作如下:把各象限均分n等份,再從x軸的正向的上方起,依次將各區(qū)域標(biāo)上I、Ⅱ、Ⅲ、Ⅳ,并循環(huán)一周,則原來是第幾象限的符號(hào)所表示的區(qū)域即為 (n∈N*)的終邊所在的區(qū)域。
題型2:三角函數(shù)定義
例5.已知角的終邊過點(diǎn),求的四個(gè)三角函數(shù)值。
解析:因?yàn)檫^點(diǎn),所以,。
當(dāng);
,。
當(dāng),;。
例6.已知角的終邊
12、上一點(diǎn),且,求的值。
解析:由題設(shè)知,,所以,
得,
從而,
解得或。
當(dāng)時(shí),, ;
當(dāng)時(shí),, ;
當(dāng)時(shí),, 。
題型3:誘導(dǎo)公式
例7.(xx遼寧文,8)已知,則( )
A. B. C. D.
答案 D
例8.化簡:
(1);
(2)。
解析:(1)原式;
(2)①當(dāng)時(shí),原式。
②當(dāng)時(shí),原式。
點(diǎn)評(píng):關(guān)鍵抓住題中的整數(shù)是表示的整數(shù)倍與公式一中的整數(shù)有區(qū)別,所以必須把分成奇數(shù)和偶數(shù)兩種類型,分別加以討論
題型4:同角三角函數(shù)的基本關(guān)系式
例9.已知,試確定使等式成立的角的集合。
解析:∵,
==
13、=。
又∵,
∴,
即得或
所以,角的集合為:或。
例10.(1)證明:;
(2)求證:。
解析:(1)分析:證明此恒等式可采取常用方法,也可以運(yùn)用分析法,即要證,只要證A·D=B·C,從而將分式化為整式
證法一:右邊=
=
=
證法二:要證等式,即為
只要證 2()()=
即證:
,
即1=,顯然成立,
故原式得證。
點(diǎn)評(píng):在進(jìn)行三角函數(shù)的化簡和三角恒等式的證明時(shí),需要仔細(xì)觀察題目的特征,靈活、恰當(dāng)?shù)剡x擇公式,利用倒數(shù)關(guān)系比常規(guī)的“化切為弦”要簡潔得多。(2)同角三角函數(shù)的基本關(guān)系式有三種,即平方關(guān)系、商的關(guān)系、倒數(shù)關(guān)系
(2)證法一:由題義知
14、,所以。
∴左邊=右邊。
∴原式成立。
證法二:由題義知,所以。
又∵,
∴。
證法三:由題義知,所以。
,
∴。
點(diǎn)評(píng):證明恒等式的過程就是分析、轉(zhuǎn)化、消去等式兩邊差異來促成統(tǒng)一的過程,證明時(shí)常用的方法有:(1)從一邊開始,證明它等于另一邊(如例5的證法一);(2)證明左右兩邊同等于同一個(gè)式子(如例6);(3)證明與原式等價(jià)的另一個(gè)式子成立,從而推出原式成立
五.【思維總結(jié)】
1.幾種終邊在特殊位置時(shí)對(duì)應(yīng)角的集合為:
角的終邊所在位置
角的集合
X軸正半軸
Y軸正半軸
X軸負(fù)半軸
Y軸負(fù)半軸
X軸
Y軸
坐標(biāo)軸
2.α
15、、、2α之間的關(guān)系。
若α終邊在第一象限則終邊在第一或第三象限;2α終邊在第一或第二象限或y軸正半軸。
若α終邊在第二象限則終邊在第一或第三象限;2α終邊在第三或第四象限或y軸負(fù)半軸。
若α終邊在第三象限則終邊在第二或第四象限;2α終邊在第一或第二象限或y軸正半軸。
若α終邊在第四象限則終邊在第二或第四象限;2α終邊在第三或第四象限或y軸負(fù)半軸。
3.任意角的概念的意義,任意角的三角函數(shù)的定義,同角間的三角函數(shù)基本關(guān)系、誘導(dǎo)公式由于本重點(diǎn)是任意角的三角函數(shù)角的基礎(chǔ),因而三學(xué)習(xí)本節(jié)內(nèi)容時(shí)要注意如下幾點(diǎn):(1)熟練地掌握常用的方法與技巧,在使用三角代換求解有關(guān)問題時(shí)要注意有關(guān)范圍的限制;(2)要注意差異分析,又要活用公式,要善于瞄準(zhǔn)解題目標(biāo)進(jìn)行有效的變形,其解題一般思維模式為:發(fā)現(xiàn)差異,尋找聯(lián)系,合理轉(zhuǎn)化
只有這樣才能在高考中奪得高分。三角函數(shù)的值與點(diǎn)在終邊上的位置無關(guān),僅與角的大小有關(guān).我們只需計(jì)算點(diǎn)到原點(diǎn)的距離,那么,,。所以,三角函數(shù)是以為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),又因?yàn)榻堑募吓c實(shí)數(shù)集之間可以建立一一對(duì)應(yīng)關(guān)系,故三角函數(shù)也可以看成實(shí)數(shù)為自變量的函數(shù)
4.運(yùn)用同角三角函數(shù)關(guān)系式化簡、證明
常用的變形措施有:大角化小,切割化弦等,應(yīng)用 “弦化切”的技巧,即分子、分母同除以一個(gè)不為零的,得到一個(gè)只含的教簡單的三角函數(shù)式。