《2022高考數(shù)學(xué)”一本“培養(yǎng)優(yōu)選練 中檔大題分類(lèi)練2 數(shù)列 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)”一本“培養(yǎng)優(yōu)選練 中檔大題分類(lèi)練2 數(shù)列 文(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022高考數(shù)學(xué)”一本“培養(yǎng)優(yōu)選練 中檔大題分類(lèi)練2 數(shù)列 文
1.已知Sn是數(shù)列{an}的前n項(xiàng)和,a1=4,an=2n+1(n≥2).
(1)證明:當(dāng)n≥2時(shí),Sn=an+n2;
(2)若等比數(shù)列{bn}的前兩項(xiàng)分別為S2,S5,求{bn}的前n項(xiàng)和Tn.
[解] (1)證明:當(dāng)n≥2時(shí),
∵Sn=4+(5+7+…+2n+1)
=4+=n2+2n+1,
∴Sn=(2n+1)+n2=an+n2.
(2)由(1)知,S2=9,S5=36,
∴等比數(shù)列{bn}的公比q==4,
又b1=S2=9,∴Tn==3(4n-1).
2.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,S
2、n+1=4an+2.
(1)設(shè)bn=an+1-2an,證明:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.
[解] (1)證明:由已知有a1+a2=4a1+2.
解得a2=3a1+2=5,故b1=a2-2a1=3.
又an+2=Sn+2-Sn+1
=4an+1+2-(4an+2)
=4an+1-4an,
于是an+2-2an+1=2(an+1-2an),
即bn+1=2bn.
因此數(shù)列{bn}是首項(xiàng)為3,公比為2的等比數(shù)列.
(2)由(1)知等比數(shù)列{bn}中b1=3,公比q=2,
所以an+1-2an=3×2n-1.
于是-=,
因此數(shù)列是首項(xiàng)為、公差
3、為的等差數(shù)列.
=+(n-1)=n-.
所以an=(3n-1)·2n-2.
3.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知a3=7,an=2an-1+a2-2(n≥2).
(1)證明:{an+1}為等比數(shù)列;
(2)求{an}的通項(xiàng)公式,并判斷n,an,Sn是否成等差數(shù)列.
[解] (1)證明:∵a3=7,a3=3a2-2,∴a2=3,
∴an=2an-1+1,∴a1=1,==2(n≥2),
∴{an+1}是首項(xiàng)為2,公比為2的等比數(shù)列.
(2)由(1)知,an+1=2n,∴an=2n-1.
∴Sn=-n=2n+1-n-2,∴n+Sn-2an=n+2n+1-n-2-2(2n-1)
4、=0
∴n+Sn=2an,即n,an,Sn成等差數(shù)列.
4.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,已知a1=1,Sn=2-2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(-1)nlogan,求數(shù)列{bn}的前n項(xiàng)和Tn.
[解] (1)∵Sn=2-2an+1,a1=1,
∴當(dāng)n=1時(shí),S1=2-2a2,得a2=1-=1-=;
當(dāng)n≥2時(shí),Sn-1=2-2an,
∴當(dāng)n≥2時(shí),an=2an-2an+1,
即an+1=an, 又a2=a1,
∴{an}是以a1=1為首項(xiàng),為公比的等比數(shù)列.
∴數(shù)列{an}的通項(xiàng)公式為an=.
(2)由(1)知,bn=(-1)n(
5、n-1),
Tn=0+1-2+3-…+(-1)n(n-1),
當(dāng)n為偶數(shù)時(shí),Tn=;
當(dāng)n為奇數(shù)時(shí),Tn=-(n-1)=,
∴Tn=
(教師備選)
1.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+pn,且a2,a5,a10成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=1+,求數(shù)列{bn}的前n項(xiàng)和Tn.
[解] (1)當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-1+p,
當(dāng)n=1時(shí),a1=S1=1+p,也滿足an=2n-1+p,故an=2n-1+p,
∵a2,a5,a10成等比數(shù)列,∴(3+p)(19+p)=(9+p)2,
∴p=6.∴an=2n+5.
(2)
6、由(1)可得bn=1+=1+=1+,
∴Tn=n+-+-+…+-=n+=.
2.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=(an-1),n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log2an,記數(shù)列的前n項(xiàng)和為T(mén)n,證明:Tn<.
[解] (1)當(dāng)n=1時(shí),有a1=S1=(a1-1),解得a1=4.當(dāng)n≥2時(shí),有Sn-1=(an-1-1),則
an=Sn-Sn-1=(an-1)-(an-1-1),整理得:=4,∴數(shù)列{an}是以q=4為公比,以a1=4為首項(xiàng)的等比數(shù)列. ∴an=4×4n-1=4n(n∈N*),
即數(shù)列{an}的通項(xiàng)公式為:an=4n(n∈N*).
(2)由(1)有bn=log2an=log24n=2n,則,
==,
∴Tn=+++…+
=-+-+-+…+-=<,故得證.