2022年高三數(shù)學一輪復習 專項訓練 函數(shù)(含解析)
《2022年高三數(shù)學一輪復習 專項訓練 函數(shù)(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學一輪復習 專項訓練 函數(shù)(含解析)(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高三數(shù)學一輪復習 專項訓練 函數(shù)(含解析) 1.記f(x)=lg(2x-3)的定義域為集合M,函數(shù)g(x)=的定義域為集合N,求: (1)集合M,N;(2)集合M∩N,M∪N. 解 (1)M={x|2x-3>0}=, N==={x|x≥3,或x<1}. (2)M∩N={x|x≥3},M∪N=. 2.二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1. (1)求f(x)的解析式; (2)在區(qū)間[-1,1]上,函數(shù)y=f(x)的圖象恒在直線y=2x+m的上方,試確定實數(shù)m的取值范圍. 解 (1)由f(0)=1,可設(shè)f(x)=ax2+bx+1(a≠0),故f
2、(x+1)-f(x)=a(x+1)2+b(x+1)+1-(ax2+bx+1)=2ax+a+b,由題意,得解得 故f(x)=x2-x+1. (2)由題意,得x2-x+1>2x+m,即x2-3x+1>m,對x∈[-1,1]恒成立.令g(x)=x2-3x+1,則問題可轉(zhuǎn)化為g(x)min>m,又因為g(x)在[-1,1]上遞減, 所以g(x)min=g(1)=-1,故m<-1. 3.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)內(nèi)單調(diào)遞減的函數(shù)是 ( ). A.y=x2 B.y=|x|+1 C.y=-lg|x| D.y=2|x| 解析 對于C中函數(shù),當x>0時,y=-lg x,
3、故為(0,+∞)上的減函數(shù),且y=-lg |x|為偶函數(shù). 答案 C 4、設(shè)函數(shù)y=x2-2x,x∈[-2,a],若函數(shù)的最小值為g(a),求g(a)的表達式。 解析 ∵函數(shù)y=x2-2x=(x-1)2-1,∴對稱軸為直線x=1. 當-2≤a<1時,函數(shù)在[-2,a]上單調(diào)遞減,則當x=a時,ymin=a2-2a;當a≥1時,函數(shù)在[-2,1]上單調(diào)遞減,在[1,a]上單調(diào)遞增,則當x=1時,ymin=-1. 綜上,g(a)= 答案 5.設(shè)函數(shù)f(x)對任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,且當x>0時,f(x)>1. (1)求證:f(x)是R上的增函數(shù)
4、;
(2)若f(4)=5,解不等式f(3m2-m-2)<3.
(1)證明 設(shè)x1 5、原點對稱
.∵當0 6、義在R上的奇函數(shù),且x≤0時,f(x)=2x2-x,∴f(1)=-f(-1)=-2×(-1)2+(-1)=-3.
答案 A
8.(xx·上海)已知y=f(x)+x2是奇函數(shù),且f(1)=1.若g(x)=f(x)+2,則g(-1)=________.
解析 因為y=f(x)+x2是奇函數(shù),且x=1時,y=2,所以當x=-1時,y=-2,即f(-1)+(-1)2=-2,得f(-1)=-3,所以g(-1)=f(-1)+2=-1.
答案?。?
9.(12分)已知f(x)是定義在R上的不恒為零的函數(shù),且對任意x,y,f(x)都滿足f(xy)=y(tǒng)f(x)+xf(y).
(1)求f(1),f(- 7、1)的值;
(2)判斷函數(shù)f(x)的奇偶性.
解 (1)因為對定義域內(nèi)任意x,y,f(x)滿足f(xy)=y(tǒng)f(x)+xf(y),所以令x=y(tǒng)=1,得f(1)=0,令x=y(tǒng)=-1,得f(-1)=0.
(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-∞,+∞)上的奇函數(shù).
10.(13分)設(shè)定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞減,若f(1-m) 8、此f(1-m) 9、m的取值范圍是 ( ).
A.(-∞,-1) B.(0,+∞)
C.(-1,0) D.(-∞,-1)∪(0,+∞)
解析 由題意得m2+1>-m+1,即m2+m>0,故m<-1或m>0.
答案 D
14.奇函數(shù)f(x)在[3,6]上是增函數(shù),且在[3,6]上的最大值為2,最小值為-1,則2f(-6)+f(-3)= ( ).
A.5 B.-5 C.3 D.-3
解析 由題意又∵f(x)是奇函數(shù),∴2f(-6)+f(-3)=-2f(6)-f(3)=-4+1=-3.
答案 D
15 10、.規(guī)定記號“?”表示一種運算,即a?b=ab+a+b2(a,b為正實數(shù)).若1?k=3,則k= ( ).
A.-2 B.1 C.-2或1 D.2
解析 根據(jù)運算有1·k+1+k2=3,k為正實數(shù),所以k=1.
答案 B
16.函數(shù)f(x)=的定義域是________.
解析 由log(x-1)≥0?0 11、f(|2x-1|) 13、0,即lg(2+a)=0,∴a=-1.故函數(shù)f(x)=lg=lg.令f(x)<0得0<<1,即x∈(-1,0).
答案 A
22.a(chǎn)=0.80.7,b=0.80.9,c=1.20.8的大小關(guān)系是 ( ).
A.a(chǎn)>b>c B.c>a>b
C.b>c>a D.b>a>c
解析 由y=ax的性質(zhì)知c>1,a<1,b<1,又考慮y=0.8x的單調(diào)性可知a>b,∴c>a>b.
答案 B
23.(xx·山東卷)函數(shù)f(x)=+的定義域為( ).
A.(-3,0] B.(-3,1]
C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1] 14、
解析 (1)由題意解得-3<x≤0.
24.函數(shù)y=ln+的定義域為________.
解析 (1)根據(jù)題意可知,??0<x≤1,故定義域為(0,1].
25. 函數(shù)f(x)=的值域為________.
解析:當x≥1時,logx≤0;當x<1時,0<2x<2,故值域為(0,2)∪(-∞,0]=(-∞,2).
26、Error! No bookmark name given. (1)已知f=lg x,求f(x)的解析式.
(2)f(x)為二次函數(shù)且f(0)=3,f(x+2)-f(x)=4x+2.試求出f(x)的解析式.
(3)定義在(-1,1)內(nèi)的函數(shù)f(x)滿足2f(x)- 15、f(-x)=lg(x+1),求函數(shù)f(x)的解析式.
解 (1)令+1=t,由于x>0,∴t>1且x=,
∴f(t)=lg ,即f(x)=lg (x>1).
(2)設(shè)f(x)=ax2+bx+c(a≠0),又f(0)=c=3.
∴f(x)=ax2+bx+3,∴f(x+2)-f(x)=a(x+2)2+b(x+2)+3-(ax2+bx+3)=4ax+4a+2b=4x+2.
∴∴
∴f(x)=x2-x+3.
(3)當x∈(-1,1)時,有2f(x)-f(-x)=lg(x+1).①
以-x代替x得,2f(-x)-f(x)=lg(-x+1).②
由①②消去f(-x)得,
f(x)=lg 16、(x+1)+lg(1-x),x∈(-1,1).
27、(1)若f(x+1)=2x2+1,則f(x)=________.
(2)定義在R上的函數(shù)f(x)滿足f(x+1)=2f(x).若當0≤x≤1時,f(x)=x(1-x),則當-1≤x≤0時,f(x)=________.
解析 (1)令t=x+1,則x=t-1,
所以f(t)=2(t-1)2+1=2t2-4t+3.
所以f(x)=2x2-4x+3.
(2)當-1≤x≤0時,有0≤x+1≤1,所以f(1+x)=(1+x)[1-(1+x)]=-x(1+x),又f(x+1)=2f(x),所以f(x)=f(1+x)=-.
答案 (1)2x 17、2-4x+3 (2)-
28.已知函數(shù)f(x)=則f(a)+f(1)=0,則實數(shù)a的值等于( ).
A.-3 B.-1或3
C.1 D.-3或1
解析 因為f(1)=lg 1=0,所以由f(a)+f(1)=0得f(a)=0.當a>0時,f(a)=lg a=0,所以a=1.
當a≤0時,f(a)=a+3=0,解得a=-3.所以實數(shù)a的值為a=1或a=-3,選D.
答案 D
29.(xx·臨沂一模)函數(shù)f(x)=ln+的定義域為( ).
A.(0,+∞) B.(1,+∞)
C.(0,1) D.(0,1)∪(1,+∞)
解析 要使函數(shù)有意義,則有
即解得 18、x>1.
答案 B
30.已知函數(shù)f(x)=則f(log27)=( ).
A. B. C. D.
解析 因為log27>1,log2>1,0<log2<1,所以f(log27)=f(log27-1)=f(log2)=f(log2-1)=f(log2)=2log2=.
答案 C
31.函數(shù)f(x)=ln的定義域是________.
解析 由題意知>0,即(x-2)(x+1)>0,解得x>2或x<-1.
答案 {x|x>2,或x<-1}
32.已知函數(shù)f(x)=若f(f(0))=4a,則實數(shù)a=________.
解析 f(f(0))=f(2)=4+2a=4a,解得a= 19、2.
答案 2
32.f(x)=則滿足f(x)=的x值為________.
解析 當x∈(-∞,1]時,2-x==2-2,∴x=2(舍去);
當x∈(1,+∞)時,log81x=,即x===3.
答案 3
33.若函數(shù)f(x)=x2-x+a的定義域和值域均為[1,b](b>1),求a,b的值.
解 ∵f(x)=(x-1)2+a-,
∴其對稱軸為x=1,即函數(shù)f(x)在[1,b]上單調(diào)遞增.
∴f(x)min=f(1)=a-=1,①
f(x)max=f(b)=b2-b+a=b,②
又b>1,由①②解得∴a,b的值分別為,3.
單調(diào)性
1、 求函數(shù)y=log(x2-4x+ 20、3)的單調(diào)區(qū)間.
解析:令u=x2-4x+3,原函數(shù)可以看作y=logu與u=x2-4x+3的復合函數(shù).
令u=x2-4x+3>0.則x<1或x>3.
∴函數(shù)y=log(x2-4x+3)的定義域為
(-∞,1)∪(3,+∞).
又u=x2-4x+3的圖象的對稱軸為x=2,且開口向上,
∴u=x2-4x+3在(-∞,1)上是減函數(shù),在(3,+∞)上是增函數(shù).而函數(shù)y=logu在(0,+∞)上是減函數(shù),
∴y=log(x2-4x+3)的單調(diào)遞減區(qū)間為(3,+∞),單調(diào)遞增區(qū)間為(-∞,1).
2、若f(x)=-x2+2ax與g(x)=在區(qū)間[1,2]上都是減函數(shù),則a的取值范圍是(
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應急救援安全知識競賽試題
- 1 礦井泵工考試練習題含答案
- 2煤礦爆破工考試復習題含答案
- 1 各種煤礦安全考試試題含答案