2022年高考數(shù)學大二輪總復習 增分策略 專題六 解析幾何 第3講 圓錐曲線的綜合問題試題
《2022年高考數(shù)學大二輪總復習 增分策略 專題六 解析幾何 第3講 圓錐曲線的綜合問題試題》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學大二輪總復習 增分策略 專題六 解析幾何 第3講 圓錐曲線的綜合問題試題(19頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高考數(shù)學大二輪總復習 增分策略 專題六 解析幾何 第3講 圓錐曲線的綜合問題試題 1.(xx·福建)設P,Q分別為圓x2+(y-6)2=2和橢圓+y2=1上的點,則P,Q兩點間的最大距離是( ) A.5 B.+ C.7+ D.6 2.(xx·陜西)如圖,橢圓E:+=1(a>b>0),經(jīng)過點A(0,-1),且離心率為. (1)求橢圓E的方程; (2)經(jīng)過點(1,1),且斜率為k的直線與橢圓E交于不同的兩點P,Q(均異于點A),證明:直線AP與AQ的斜率之和為2. 1.圓錐曲線的綜合問題一般以直線和圓錐曲線的位置關系為載體,以參數(shù)
2、處理為核心,考查范圍、最值問題,定點、定值問題,探索性問題.2.試題解答往往要綜合應用函數(shù)與方程、數(shù)形結合、分類討論等多種思想方法,對計算能力也有較高要求,難度較大. 熱點一 范圍、最值問題 圓錐曲線中的范圍、最值問題,可以轉化為函數(shù)的最值問題(以所求式子或參數(shù)為函數(shù)值),或者利用式子的幾何意義求解. 例1 (xx·重慶)如圖,橢圓+=1(a>b>0)的左、右焦點分別為F1、F2,過F2的直線交橢圓于P,Q兩點,且PQ⊥PF1. (1)若|PF1|=2+,|PF2|=2-,求橢圓的標準方程; (2)若|PQ|=λ|PF1|,且≤λ<,試確定橢圓離心率e的取值范圍.
3、 思維升華 解決范圍問題的常用方法: (1)數(shù)形結合法:利用待求量的幾何意義,確定出極端位置后,數(shù)形結合求解. (2)構建不等式法:利用已知或隱含的不等關系,構建以待求量為元的不等式求解. (3)構建函數(shù)法:先引入變量構建以待求量為因變量的函數(shù),再求其值域. 跟蹤演練1 已知橢圓C的左,右焦點分別為F1,F(xiàn)2,橢圓的離心率為,且橢圓經(jīng)過點P(1,). (1)求橢圓C的標準方程; (2)線段PQ是橢圓過點F2的弦,且=λ,求△PF1Q內切圓面積最大時實數(shù)λ的值. 熱點
4、二 定點、定值問題 1.由直線方程確定定點,若得到了直線方程的點斜式:y-y0=k(x-x0),則直線必過定點(x0,y0);若得到了直線方程的斜截式:y=kx+m,則直線必過定點(0,m). 2.解析幾何中的定值問題是指某些幾何量(線段的長度、圖形的面積、角的度數(shù)、直線的斜率等)的大小或某些代數(shù)表達式的值等與題目中的參數(shù)無關,不依參數(shù)的變化而變化,而始終是一個確定的值. 例2 橢圓C:+=1(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為. (1)求橢圓C的標準方程; (2)若直線l:y=kx+m與橢圓C相交于A,B兩點(A,B不是左,右頂點),且以AB為直徑的圓過橢圓C
5、的右頂點,求證:直線l過定點,并求出該定點的坐標. 思維升華 (1)動直線l過定點問題解法:設動直線方程(斜率存在)為y=kx+t,由題設條件將t用k表示為t=mk,得y=k(x+m),故動直線過定點(-m,0).(2)動曲線C過定點問題解法:引入?yún)⒆兞拷⑶€C的方程,再根據(jù)其對參變量恒成立,令其系數(shù)等于零,得出定點. 跟蹤演練2 已知直線l:y=x+,圓O:x2+y2=5,橢圓E:+=1(a>b>0)的離心率e=,直線l被圓O截得的弦長與橢圓的短軸長相等. (1)求橢圓E的方程; (2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,
6、求證:兩切線的斜率之積為定值. 熱點三 探索性問題 1.解析幾何中的探索性問題,從類型上看,主要是存在類型的相關題型,解決這類問題通常采用“肯定順推法”,將不確定性問題明朗化.其步驟為:假設滿足條件的元素(點、直線、曲線或參數(shù))存在,用待定系數(shù)法設出,列出關于待定系數(shù)的方程組,若方程組有實數(shù)解,則元素(點、直線、曲線或參數(shù))存在;否則,元素(點、直線、曲線或參數(shù))不存在. 2.反證法與驗證法也是求解存在性問題常用的方法. 例3 如圖,拋物線C:y2=2px的焦點為F,拋物線上一定點Q(1,2). (1)求拋物線C的方
7、程及準線l的方程; (2)過焦點F的直線(不經(jīng)過Q點)與拋物線交于A,B兩點,與準線l交于點M,記QA,QB,QM的斜率分別為k1,k2,k3,問是否存在常數(shù)λ,使得k1+k2=λk3成立,若存在λ,求出λ的值;若不存在,說明理由. 思維升華 解決探索性問題的注意事項: 存在性問題,先假設存在,推證滿足條件的結論,若結論正確則存在,若結論不正確則不存在. (1)當條件和結論不唯一時,要分類討論. (2)當給出結論而要推導出存在的條件時,先假設成立,再推出條件. (3)當條件和結論都不知,按
8、常規(guī)方法解題很難時,要思維開放,采取另外的途徑. 跟蹤演練3 (xx·四川)如圖,橢圓E:+=1(a>b>0)的離心率是,點P(0,1)在短軸CD上,且·=-1. (1)求橢圓E的方程; (2)設O為坐標原點,過點P的動直線與橢圓交于A,B兩點.是否存在常數(shù)λ,使得·+λ·為定值?若存在,求λ的值;若不存在,請說明理由. 已知橢圓C1:+=1(a>0)與拋物線C2:y2=2ax相交于A,B兩點,且兩曲線的焦點F重合. (1)求C1,C2的方程; (2)若過焦點F的直線l與橢圓分別交于M,Q兩點,與拋物線分別交于P,N兩點,是否存在斜率為k(k≠0)的直線
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。