(通用版)2022年高考數(shù)學二輪復習 專題跟蹤檢測(十八)坐標系與參數(shù)方程 理(重點生含解析)(選修4-4)

上傳人:xt****7 文檔編號:106940095 上傳時間:2022-06-14 格式:DOC 頁數(shù):6 大?。?9.50KB
收藏 版權申訴 舉報 下載
(通用版)2022年高考數(shù)學二輪復習 專題跟蹤檢測(十八)坐標系與參數(shù)方程 理(重點生含解析)(選修4-4)_第1頁
第1頁 / 共6頁
(通用版)2022年高考數(shù)學二輪復習 專題跟蹤檢測(十八)坐標系與參數(shù)方程 理(重點生含解析)(選修4-4)_第2頁
第2頁 / 共6頁
(通用版)2022年高考數(shù)學二輪復習 專題跟蹤檢測(十八)坐標系與參數(shù)方程 理(重點生含解析)(選修4-4)_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(通用版)2022年高考數(shù)學二輪復習 專題跟蹤檢測(十八)坐標系與參數(shù)方程 理(重點生含解析)(選修4-4)》由會員分享,可在線閱讀,更多相關《(通用版)2022年高考數(shù)學二輪復習 專題跟蹤檢測(十八)坐標系與參數(shù)方程 理(重點生含解析)(選修4-4)(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、(通用版)2022年高考數(shù)學二輪復習 專題跟蹤檢測(十八)坐標系與參數(shù)方程 理(重點生,含解析)(選修4-4) 1.(2018·全國卷Ⅲ)在平面直角坐標系xOy中,⊙O的參數(shù)方程為(θ為參數(shù)),過點(0,-)且傾斜角為α的直線l與⊙O交于A,B兩點. (1)求α的取值范圍; (2)求AB中點P的軌跡的參數(shù)方程. 解:(1)⊙O的直角坐標方程為x2+y2=1. 當α=時,l與⊙O交于兩點. 當α≠時,記tan α=k,則l的方程為y=kx-. l與⊙O交于兩點需滿足<1, 解得k<-1或k>1, 即α∈或α∈. 綜上,α的取值范圍是. (2)l的參數(shù)方程為(t為參數(shù),<α<

2、).設A,B,P對應的參數(shù)分別為tA,tB,tP, 則tP=,且tA,tB滿足t2-2tsin α+1=0. 于是tA+tB=2sin α,tP=sin α. 又點P的坐標(x,y)滿足 所以點P的軌跡的參數(shù)方程是 (α為參數(shù),<α<). 2.(2018·開封模擬)在直角坐標系xOy中,直線C1的參數(shù)方程為(t為參數(shù)),圓C2:(x-2)2+y2=4,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系. (1)求C1,C2的極坐標方程和交點A的坐標(非坐標原點); (2)若直線C3的極坐標方程為θ=(ρ∈R),設C2與C3的交點為B(非坐標原點),求△OAB的最大面積. 解:

3、(1)由(t為參數(shù)),得曲線C1的普通方程為y=xtan α,故曲線C1的極坐標方程為θ=α(ρ∈R).將x=ρcos θ,y=ρsin θ代入(x-2)2+y2=4,得C2的極坐標方程為ρ=4cos θ.故交點A的坐標為(4cos α,α)(也可寫出直角坐標). (2)由題意知,點B的極坐標為. ∴S△OAB== , 當sin=-1時,(S△OAB)max=2+2, 故△OAB的最大面積是2+2. 3.(2018·遼寧五校協(xié)作體聯(lián)考)極坐標系的極點為直角坐標系xOy的原點,極軸為x軸的正半軸,兩種坐標系中的長度單位相同.已知曲線C的極坐標方程為ρ=2sin θ,θ∈. (1)求

4、曲線C的直角坐標方程; (2)在曲線C上求一點D,使它到直線l:(t為參數(shù))的距離最短,寫出D點的直角坐標. 解:(1)由ρ=2sin θ,可得ρ2=2ρsin θ, ∴曲線C的直角坐標方程為x2+y2-2y=0. (2)由直線l的參數(shù)方程為(t為參數(shù)),消去t得l的普通方程為x+y-5=0, 由(1)得曲線C的圓心為(0,1),半徑為1, 又點(0,1)到直線l的距離為=2>1, 所以曲線C與l相離. 因為點D在曲線C上, 所以可設D(cos α,1+sin α),則點D到直線l的距離d==, 當sin=1時,點D到直線l的距離d最短,此時α=,故點D的直角坐標為. 4

5、.(2019屆高三·昆明調(diào)研)在平面直角坐標系xOy中,已知傾斜角為α的直線l過點A(2,1).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.曲線C的極坐標方程為ρ=2sin θ,直線l與曲線C分別交于P,Q兩點. (1)寫出直線l的參數(shù)方程和曲線C的直角坐標方程; (2)若|PQ|2=|AP|·|AQ|,求直線l的斜率k. 解:(1)直線l的參數(shù)方程為(t為參數(shù)), 曲線C的直角坐標方程為x2+y2=2y. (2)將直線l的參數(shù)方程代入曲線C的直角坐標方程,得t2+(4cos α)t+3=0, 由Δ=(4cos α)2-4×3>0,得cos2α>, 則t1+t2=-4co

6、s α,t1·t2=3, 由參數(shù)的幾何意義知, |AP|=|t1|,|AQ|=|t2|, |PQ|=|t1-t2|, 由題意知,(t1-t2)2=t1·t2, 則(t1+t2)2=5t1·t2,得(-4cos α)2=5×3, 解得cos2α=,滿足cos2α>, 所以sin2α=,tan2α=, 所以直線l的斜率k=tan α=±. 5.已知曲線C:(α為參數(shù))和定點A(0,),F(xiàn)1,F(xiàn)2是此曲線的左、右焦點,以坐標原點O為極點,以x軸的正半軸為極軸建立極坐標系. (1)求直線AF2的極坐標方程; (2)經(jīng)過點F1且與直線AF2垂直的直線l交曲線C于M,N兩點,求||M

7、F1|-|NF1||的值. 解:(1)曲線C:可化為+=1, 故曲線C為橢圓,則焦點F1(-1,0),F(xiàn)2(1,0). 所以經(jīng)過點A(0,)和F2(1,0)的直線AF2的方程為x+=1,即x+y-=0, 所以直線AF2的極坐標方程為ρcos θ+ρsin θ=. (2)由(1)知,直線AF2的斜率為-,因為l⊥AF2,所以直線l的斜率為,即傾斜角為30°, 所以直線l的參數(shù)方程為(t為參數(shù)), 代入橢圓C的方程中,得13t2-12t-36=0. 則t1+t2=. 因為點M,N在點F1的兩側(cè), 所以||MF1|-|NF1||=|t1+t2|=. 6.(2018·濰坊模擬)在

8、平面直角坐標系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρcos2θ=sin θ(ρ≥0,0≤θ<π). (1)寫出曲線C1的極坐標方程,并求C1與C2交點的極坐標; (2)射線θ=β與曲線C1,C2分別交于點A,B(A,B異于原點),求的取值范圍. 解:(1)由題意可得曲線C1的普通方程為x2+(y-2)2=4, 把x=ρcos θ,y=ρsin θ代入,得曲線C1的極坐標方程為ρ=4sin θ, 聯(lián)立得4sin θcos2θ=sin θ,此時0≤θ<π, ①當sin θ=0時,θ=0,ρ=0,得交點的極

9、坐標為(0,0); ②當sin θ≠0時,cos2θ=,得cos θ=±, 當cos θ=時,θ=,ρ=2,得交點的極坐標為, 當cos θ=-時,θ=,ρ=2,得交點的極坐標為, ∴C1與C2交點的極坐標為(0,0),,. (2)將θ=β代入C1的極坐標方程中,得ρ1=4sin β, 代入C2的極坐標方程中,得ρ2=, ∴==4cos2β. ∵≤β≤,∴1≤4cos2β≤3, ∴的取值范圍為[1,3]. 7.(2018·福州模擬)在平面直角坐標系xOy中,曲線C:(α為參數(shù),t>0).在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,直線l:ρcos=. (1)若

10、l與曲線C沒有公共點,求t的取值范圍; (2)若曲線C上存在點到l的距離的最大值為+,求t的值. 解:(1)因為直線l的極坐標方程為ρcos=,即ρcos θ+ρsin θ=2, 所以直線l的直角坐標方程為x+y=2. 因為曲線C的參數(shù)方程為(α為參數(shù),t>0), 所以曲線C的普通方程為+y2=1(t>0), 由消去x,得(1+t2)y2-4y+4-t2=0, 所以Δ=16-4(1+t2)(4-t2)<0, 又t>0,所以0<t<, 故t的取值范圍為(0,). (2)由(1)知直線l的直角坐標方程為x+y-2=0, 故曲線C上的點(tcos α,sin α)到l的距離

11、d=, 故d的最大值為, 由題設得=+, 解得t=±. 又t>0,所以t=. 8.(2019屆高三·成都診斷)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),直線l的參數(shù)方程為(t為參數(shù)).在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,過極點O的射線與曲線C相交于不同于極點的點A,且點A的極坐標為(2,θ),其中θ∈. (1)求θ的值; (2)若射線OA與直線l相交于點B,求|AB|的值. 解:(1)由題意知,曲線C的普通方程為x2+(y-2)2=4, ∵x=ρcos θ,y=ρsin θ, ∴曲線C的極坐標方程為(ρcos θ)2+(ρsin θ-2)2=4, 即ρ=4sin θ. 由ρ=2,得sin θ=, ∵θ∈,∴θ=. (2)易知直線l的普通方程為x+y-4=0, ∴直線l的極坐標方程為ρcos θ+ρsin θ-4=0. 又射線OA的極坐標方程為θ=(ρ≥0), 聯(lián)立解得ρ=4. ∴點B的極坐標為, ∴|AB|=|ρB-ρA|=4-2=2.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲