8、+2)=2f(x),可得f(x)=f(x+2)=f(x+4),當(dāng)x∈[-2,0]時(shí),x+4∈[2,4].則f(x)在[-2,0]上的值域?yàn)?
當(dāng)a>0時(shí),g(x)∈[-2a+1,a+1],則有解得a≥;當(dāng)a=0時(shí),g(x)=1,不符合題意;當(dāng)a<0時(shí),g(x)∈[a+1,-2a+1],則有解得a≤-.
綜上所述,可得a的取值范圍為
∪.
9.(2018·四川省成都市第七中學(xué)模擬)已知函數(shù)f(x)=是奇函數(shù),則g(f(-2))的值為_(kāi)_______.
答案?。?
解析 ∵函數(shù)f(x)=是奇函數(shù),
∴f(-2)=-f(2)=-(4-2)=-2,
g(f(-2))=g(-2)=f(-
9、2)=-2.
10.已知函數(shù)f(x)=則函數(shù)g(x)=2|x|f(x)-2的零點(diǎn)個(gè)數(shù)為_(kāi)_______.
答案 2
解析 畫(huà)出函數(shù)f(x)=的圖象如圖,
由g(x)=2|x|f(x)-2=0可得f(x)=,則問(wèn)題化為函數(shù)f(x)=與函數(shù)y==21-|x|的圖象的交點(diǎn)的個(gè)數(shù)問(wèn)題.結(jié)合圖象可以看出兩函數(shù)圖象的交點(diǎn)只有兩個(gè).
11.(2018·東北三省三校模擬)函數(shù)f(x)=ax-2 015+2 017(a>0且a≠1)所過(guò)的定點(diǎn)坐標(biāo)為_(kāi)_______.
答案 (2 015,2 018)
解析 當(dāng)x=2 015時(shí),
f(2 015)=a2 015-2 015+2 017=a0+2
10、 017=2 018,
∴f(x)=ax-2 015+2 017(a>0且a≠1)過(guò)定點(diǎn)(2 015,2 018).
12.(2018·南平質(zhì)檢)已知實(shí)數(shù)x,y滿(mǎn)足x2-sin y=1,則sin y-x的取值范圍是________.
答案
解析 由x2-sin y=1,可得sin y=x2-1.
又sin y∈[-1,1],所以x2-1∈[-1,1],
解得-≤x≤.
sin y-x=x2-x-1=2-.
結(jié)合-≤x≤,
可得2-∈.
13.若函數(shù)f(x)對(duì)定義域內(nèi)的任意x1,x2,當(dāng)f(x1)=f(x2)時(shí),總有x1=x2,則稱(chēng)函數(shù)f(x)為單純函數(shù),例如函數(shù)f(x)=
11、x是單純函數(shù),但函數(shù)f(x)=x2不是單純函數(shù),下列命題:
①函數(shù)f(x)=是單純函數(shù);
②當(dāng)a>-2時(shí),函數(shù)f(x)=在(0,+∞)上是單純函數(shù);
③若函數(shù)f(x)為其定義域內(nèi)的單純函數(shù),x1≠x2,則f(x1)≠f(x2);
④若函數(shù)f(x)是單純函數(shù)且在其定義域內(nèi)可導(dǎo),則在其定義域內(nèi)一定存在x0使其導(dǎo)數(shù)f′(x0)=0,其中正確的命題為_(kāi)_______.(填上所有正確命題的序號(hào))
答案?、佗?
解析 由題設(shè)中提供的“單純函數(shù)”的定義可知,當(dāng)函數(shù)是單調(diào)函數(shù)時(shí),該函數(shù)必為單純函數(shù).因?yàn)楫?dāng)x≥2時(shí),f(x)=log2x單調(diào),當(dāng)x<2時(shí),f(x)=x-1單調(diào),結(jié)合f(x)的圖象可知f(
12、x)是單純函數(shù),故命題①正確;對(duì)于命題②,f(x)=x++a,由f(2)=f但2≠可知f(x)不是單純函數(shù),故命題②錯(cuò)誤;此命題是單純函數(shù)定義的逆否命題,故當(dāng)x1≠x2時(shí),f(x1)≠f(x2),即命題③正確;對(duì)于命題④,例如,f(x)=x是單純函數(shù)且在其定義域內(nèi)可導(dǎo),但在定義域內(nèi)不存在x0,使f′(x0)=0,故④錯(cuò)誤,答案為①③.
14.已知函數(shù)f(x)=sin x+2|sin x|,關(guān)于x的方程f2(x)-f(x)-1=0有以下結(jié)論:
①當(dāng)a≥0時(shí),方程f2(x)-f(x)-1=0恒有根;
②當(dāng)0≤a<時(shí),方程f2(x)-f(x)-1=0在內(nèi)有兩個(gè)不等實(shí)根;
③當(dāng)a≥0時(shí)
13、,方程f2(x)-f(x)-1=0在內(nèi)最多有9個(gè)不等實(shí)根;
④若方程f2(x)-f(x)-1=0在內(nèi)根的個(gè)數(shù)為非零偶數(shù),則所有根之和為15π.
其中正確的結(jié)論是________.(填序號(hào))
答案?、邰?
解析 如圖所示,令f(x)=t,故可將題意理解為先求出t2-t-1=0的解,然后再令f(x)=t即可得出方程的根的情況,而假設(shè)t2-t-1=0有兩解t1,t2,則t1+t2=,t1·t2=-1,
故t1,t2一正一負(fù),顯然負(fù)根與函數(shù)f(x)的圖象不會(huì)產(chǎn)生交點(diǎn),故只需討論正根與圖象的交點(diǎn),不妨假設(shè)t1為正根,故可得t1-=,
對(duì)于①顯然錯(cuò)誤,只要足夠大,很顯然與函數(shù)圖象不會(huì)有交點(diǎn),故①錯(cuò)誤.對(duì)于②,當(dāng)0≤a<時(shí),∈,故t1∈[1,3),故方程f2(x)-f(x)-1=0在內(nèi)有兩個(gè)或三個(gè)不等實(shí)根,故②錯(cuò)誤.對(duì)于③,當(dāng)a≥0時(shí),故∈[0,+∞),當(dāng)a=0時(shí),t1的最小值取1.當(dāng)t1=1時(shí),此時(shí)在內(nèi)有9個(gè)不等實(shí)根;當(dāng)a>0時(shí),此時(shí)在內(nèi)無(wú)根或者3個(gè)根或者6個(gè)根,故最多9個(gè)根,③正確;對(duì)于④,當(dāng)在內(nèi)有偶數(shù)(非零)個(gè)根時(shí),即為6個(gè)根,此時(shí)6個(gè)解關(guān)于x=對(duì)稱(chēng),故6個(gè)根的和為×2×3=15π,④正確,故正確的為③④.