《陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué) 第一章 正弦函數(shù)誘導(dǎo)公式教案1 北師大版必修4(通用)》由會員分享,可在線閱讀,更多相關(guān)《陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué) 第一章 正弦函數(shù)誘導(dǎo)公式教案1 北師大版必修4(通用)(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、正弦函數(shù)誘導(dǎo)公式
一、教學(xué)目標(biāo)
1、知識與技能:
(1)進(jìn)一步熟悉單位圓中的正弦線;
(2)理解正弦誘導(dǎo)公式的推導(dǎo)過程;
(3)掌握正弦誘導(dǎo)公式的運(yùn)用;
(4)能了解誘導(dǎo)公式之間的關(guān)系,能相互推導(dǎo)。
2、過程與方法:
通過正弦線表示α,-α,π-α,π+α,2π-α,從而體會各正弦線之間的關(guān)系;或從正弦函數(shù)的圖像中找出α,-α,π-α,π+α,2π-α,讓學(xué)生從中發(fā)現(xiàn)正弦函數(shù)的誘導(dǎo)公式;講解例題,總結(jié)方法,鞏固練習(xí)。
3、情感態(tài)度與價值觀:
通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生創(chuàng)新能力、探索歸納能力;讓學(xué)生體驗自身探索成功的喜悅感,培養(yǎng)學(xué)生的自信心;使學(xué)生認(rèn)識到轉(zhuǎn)化“矛盾”是解決問題的
2、有效途經(jīng);培養(yǎng)學(xué)生形成實事求是的科學(xué)態(tài)度和鍥而不舍的鉆研精神。
二、教學(xué)重、難點(diǎn)
重點(diǎn): 正弦函數(shù)的誘導(dǎo)公式。
難點(diǎn): 誘導(dǎo)公式的靈活運(yùn)用。
三、學(xué)法與教法
在上一節(jié)課的基礎(chǔ)上,運(yùn)用單位圓中正弦線或正弦函數(shù)圖像中角的關(guān)系,引發(fā)學(xué)生探索出正弦函數(shù)的誘導(dǎo)公式;通過例題和練習(xí)掌握誘導(dǎo)公式在解題中的作用;在正弦函數(shù)的圖像中,以學(xué)生的自主學(xué)習(xí)和合作探究式學(xué)習(xí)為主。教法: 自主合作探究式
四、教學(xué)過程
(一)、創(chuàng)設(shè)情境,揭示課題
在上一節(jié)課中,我們已經(jīng)學(xué)習(xí)了任意角的正弦函數(shù)定義,以及終邊相同的角的正弦函數(shù)值也相等,即sin(2kπ+α)=sinα (k∈Z),這一公式體現(xiàn)了求任意角的
3、正弦函數(shù)值轉(zhuǎn)化為求0°~360°的角的正弦函數(shù)值。如果還能把0°~360°間的角轉(zhuǎn)化為銳角的正弦函數(shù),那么任意角的正弦函數(shù)就可以查表求出。這就是我們這一節(jié)課要解決的問題。
(二)、探究新知
1、復(fù)習(xí):(公式1)sin(360°k+a) = sina
2、對于任一0°到360°的角,有四種可能(其中a為不大于90°的非負(fù)角)
(以下設(shè)a為任意角)
x
y
o
P’(x,-y)
P(x,y)
M
x
y
o
P (x,y)
P ,(-x,-y)
3、公式2:
設(shè)a的終邊與單位圓交于點(diǎn)P(x,y),則180°+a終邊與單位圓交于點(diǎn)P’(-x,-
4、y),由正弦線可知: sin(180°+a) = -sina
4.公式3:如圖:在單位圓中作出α與-α角的終邊,
同樣可得:sin(-a) = -sina,
5、公式4:由公式2和公式3可得:
sin(180°-a) = sin[180°+(-a)] = -sin(-a) = sina,
同理可得: sin(180°-a) = sina,
6.公式5:sin(360°-a) = -sina
(三)、鞏固深化,發(fā)展思維
1、例題探析
例1. 求下列函數(shù)值
(1)sin(-1650°); (2)sin(-150°15’); (3)sin(-π
5、)
解:(1)sin(-1650°)=-sin1650°=-sin(4×360°+210°)=-sin210°
=-sin(180°+30°)=sin30°=
(2) sin(-150°15’)=-sin150°15’=-sin(180°-29°45’)
=-sin29°45’=-0.4962
(3) sin(-π)=sin(-2π+)=sin=
例2.化簡:
解:原式=
2. 學(xué)生練習(xí):教材P20練習(xí)1、2、3
(四)、歸納整理,整體認(rèn)識
(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
(五)、作業(yè)布置:1、若,則= 。
2、若是方程的根,求的值。
3、化簡:。
4、已知A、B、C是的內(nèi)角,求證:。
五、教后反思: