2020年高考數(shù)學 考點分析與突破性講練 專題27 直線、平面垂直的判定和性質(zhì) 理

上傳人:艷*** 文檔編號:110336916 上傳時間:2022-06-18 格式:DOC 頁數(shù):9 大小:158.50KB
收藏 版權(quán)申訴 舉報 下載
2020年高考數(shù)學 考點分析與突破性講練 專題27 直線、平面垂直的判定和性質(zhì) 理_第1頁
第1頁 / 共9頁
2020年高考數(shù)學 考點分析與突破性講練 專題27 直線、平面垂直的判定和性質(zhì) 理_第2頁
第2頁 / 共9頁
2020年高考數(shù)學 考點分析與突破性講練 專題27 直線、平面垂直的判定和性質(zhì) 理_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020年高考數(shù)學 考點分析與突破性講練 專題27 直線、平面垂直的判定和性質(zhì) 理》由會員分享,可在線閱讀,更多相關(guān)《2020年高考數(shù)學 考點分析與突破性講練 專題27 直線、平面垂直的判定和性質(zhì) 理(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題27 直線、平面垂直的判定和性質(zhì) 一、考綱要求: 1.以立體幾何的定義、公理和定理為出發(fā)點,認識和理解空間中線面垂直的有關(guān)性質(zhì)與判定定理. 2.能運用公理、定理和已獲得的結(jié)論證明一些空間圖形的垂直關(guān)系的簡單命題. 二、概念掌握及解題上的注意點: 1.證明直線和平面垂直的常用方法 (1))利用判定定理. (2))利用判定定理的推論(a∥b,a⊥α?b⊥α). (3))利用面面平行的性質(zhì)(a⊥α,α∥β?a⊥β). (4))利用面面垂直的性質(zhì). 當兩個平面垂直時,在一個平面內(nèi)垂直于交線的直線垂直于另一個平面. (5))重視平面幾何知識,特別是勾股定理的應用. 2.面面垂

2、直的兩種證明方法 (1)定義法:利用面面垂直的定義,即判定兩平面所成的二面角為直二面角,將證明面面垂直問題轉(zhuǎn)化為證明平面角為直角的問題. (2)定理法:利用面面垂直的判定定理,即證明其中一個平面經(jīng)過另一個平面的一條垂線,把問題轉(zhuǎn)化成證明線線垂直加以解決. 3.三種垂直關(guān)系的轉(zhuǎn)化 4.平行與垂直的綜合應用問題的主要數(shù)學思想和處理策略 (1))處理平行與垂直的綜合問題的主要數(shù)學思想是轉(zhuǎn)化,要熟練掌握線線、線面、面面之間的平行與垂直的轉(zhuǎn)化. (2))探索性問題一般是先根據(jù)條件猜測點的位置再給出證明,探索點的存在問題,點多為中點或三等分點中的某一個,也可以根據(jù)相似知識找點. 三、高考

3、考題題例分析: 例1.(2020課標卷I節(jié)選)如圖,四邊形ABCD為正方形,E,F(xiàn)分別為AD,BC的中點,以DF為折痕把△DFC折起,使點C到達點P的位置,且PF⊥BF. (1)證明:平面PEF⊥平面ABFD; ( 【答案】見解析 例2.(2020課標II節(jié)選) 如圖,在三棱錐P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O為AC的中點. (1)證明:PO⊥平面ABC; 【答案】見解析 【解析】:(1)證明:∵AB=BC=2,O是AC的中點, ∴BO⊥AC,且BO=2, 又PA=PC=PB=AC=2, ∴PO⊥AC,PO=2, 則PB2=PO2+BO

4、2, 則PO⊥OB, ∵OB∩AC=O, ∴PO⊥平面ABC; 例3.(2020課標卷III節(jié)選)如圖,邊長為2的正方形ABCD所在的平面與半圓弧所在平面垂直,M是上異于C,D的點. (1)證明:平面AMD⊥平面BMC; 【答案】見解析 例4.(2020北京卷節(jié)選)如圖,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,D,E,F(xiàn),G分別為AA1,AC,A1C1,BB1的中點,AB=BC=,AC=AA1=2. (Ⅰ)求證:AC⊥平面BEF; 【答案】見解析 【解析】(I)證明:∵E,F(xiàn)分別是AC,A1C1的中點,∴EF∥CC1, ∵CC1⊥平面ABC

5、,∴EF⊥平面ABC, 又AC?平面ABC,∴EF⊥AC, ∵AB=BC,E是AC的中點, ∴BE⊥AC, 又BE∩EF=E,BE?平面BEF,EF?平面BEF, ∴AC⊥平面BEF. 3.已知在空間四邊形ABCD中,AD⊥BC,AD⊥BD,且△BCD是銳角三角形,則必有 (  ) A.平面ABD⊥平面ADC  B.平面ABD⊥平面ABC C.平面ADC⊥平面BDC D.平面ABC⊥平面BDC 4.設(shè)a,b是兩條不同的直線,α,β是兩個不同的平面,則能得出a⊥b的是 (  ) A.a(chǎn)⊥α,b∥β,α⊥β B.a(chǎn)⊥α,b⊥β,α∥β C.a(chǎn)?α,b⊥β,α∥β

6、 D.a(chǎn)?α,b∥β,α⊥β 【答案】C 【解析】:選C 對于C項,由α∥β,a?α可得a∥β,又b⊥β,得a⊥b,故選C. 5.如圖,在Rt△ABC中,∠ABC=90°,P為△ABC所在平面外一點,PA⊥平面ABC,則四面體P -ABC中直角三角形的個數(shù)為(  ) A.4 B.3 C.2 D.1 【答案】A 【解析】:選A 由PA⊥平面ABC可得△PAC,△PAB是直角三角形,且PA⊥BC.又∠ABC=90°,所以△ABC是直角三角形,且BC⊥平面PAB,所以BC⊥PB,即△PBC為直角三角形,故四面體P -ABC中共有4個直角三角形. 6.如圖,O為正方體ABCD-A

7、1B1C1D1的底面ABCD的中心,則下列直線中與B1O垂直的是 (  ) A.A1D B.AA1 C.A1D1 D.A1C1 【答案】D 【解析】 易知AC⊥平面BB1D1D. ∵A1C1∥AC,∴A1C1⊥平面BB1D1D. 又B1O?平面BB1D1D,∴A1C1⊥B1O,故選D. 7.設(shè)α,β為兩個不同的平面,直線l?α,則“l(fā)⊥β”是“α⊥β”成立的 (  ) A.充分不必要條件 B.必要不充分條件 C

8、.充要條件 D.既不充分也不必要條件 【答案】A 8.已知m和n是兩條不同的直線,α和β是兩個不重合的平面,下面給出的條件中一定能推出m⊥β的是 (  ) A.α⊥β且m?α     B.α⊥β且m∥α C.m∥n且n⊥β D.m⊥n且n∥β 【答案】C 【解析】 對于選項A,α⊥β且m?α,可得m∥β或m與β相交或m?β,故A不成立;對于選項B,α⊥β且m∥α,可得m?β或m∥β或m與β相交,故B不成立;對于選項C,m∥n且n⊥β,則m⊥β,故C正確;對于選

9、項D,由m⊥n且n∥β,可得m∥β或m與β相交或m?β,故D不成立,故選C. 9.設(shè)a,b是夾角為30°的異面直線,則滿足條件“a?α,b?β,且α⊥β”的平面α,β(  ) A.不存在 B.有且只有一對 C.有且只有兩對 D.有無數(shù)對 【答案】D 10.在正方體ABCD-A1B1C1D1中,E為棱CD的中點,則 (  ) A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC 【答案】C 【解析】 如圖,∵A1E在平面ABCD上的投影為AE,而AE不與AC,BD垂直,∴B,D錯; ∵A1E在平面BC

10、C1B1上的投影為B1C,且B1C⊥BC1, ∴A1E⊥BC1,故C正確; (證明:由條件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C, ∴BC1⊥平面CEA1B1.又A1E?平面CEA1B1,∴A1E⊥BC1) ∵A1E在平面DCC1D1上的投影為D1E,而D1E不與DC1垂直,故A錯. 故選C. 11.如圖,在正方形ABCD中,E、F分別是BC、CD的中點,G是EF的中點,現(xiàn)在沿AE、AF及EF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有

11、 (  ) A.AG⊥平面EFH B.AH⊥平面EFH C.HF⊥平面AEF D.HG⊥平面AEF 【答案】B 12.如圖,在正方形ABCD中,E,F(xiàn)分別是BC,CD的中點,沿AE,AF,EF把正方形折成一個四面體,使B,C,D三點重合,重合后的點記為P,P點在△AEF內(nèi)的射影為O,則下列說法正確的是 (  ) A.O是△AEF的垂心 B.O是△AEF的內(nèi)心

12、 C.O是△AEF的外心 D.O是△AEF的重心 【答案】A 【解析】 由題意可知PA,PE,PF兩兩垂直, 所以PA⊥平面PEF,從而PA⊥EF, 而PO⊥平面AEF,則PO⊥EF,因為PO∩PA=P, 所以EF⊥平面PAO, 所以EF⊥AO,同理可知AE⊥FO,AF⊥EO, 所以O(shè)為△AEF的垂心. 二、填空題 13.如圖,∠BAC=90°,PC⊥平面ABC,則在△ABC,△PAC的邊所在的直線中,與PC垂直的直線是________;與AP垂直的直線是________. 【答案】AB,BC,AC;AB  【解析】∵PC⊥平面ABC, ∴PC垂直于直線AB,BC,AC. ∵AB⊥AC,AB⊥PC,AC∩PC=C, ∴AB⊥平面PAC, ∴AB⊥AP,故與AP垂直的直線是AB. 22.如圖,高為1的等腰梯形ABCD中,AM=CD=AB=1,M為AB的三等分點.現(xiàn)將△AMD沿MD折起,使平面AMD⊥平面MBCD,連接AB,AC. (1)在AB邊上是否存在點P,使AD∥平面MPC,請說明理由; (2)當點P為AB邊中點時,求點B到平面MPC的距離. 【答案】見解析 在△MPC中,MP=AB=, MC=,PC==, ∴S△MPC=××=. ∴點B到平面MPC的距離為==.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲