江蘇省啟東市2020屆高考數(shù)學(xué)二輪復(fù)習(xí) 專題強(qiáng)化訓(xùn)練4(無答案)

上傳人:艷*** 文檔編號:111366138 上傳時(shí)間:2022-06-20 格式:DOC 頁數(shù):8 大小:4.12MB
收藏 版權(quán)申訴 舉報(bào) 下載
江蘇省啟東市2020屆高考數(shù)學(xué)二輪復(fù)習(xí) 專題強(qiáng)化訓(xùn)練4(無答案)_第1頁
第1頁 / 共8頁
江蘇省啟東市2020屆高考數(shù)學(xué)二輪復(fù)習(xí) 專題強(qiáng)化訓(xùn)練4(無答案)_第2頁
第2頁 / 共8頁
江蘇省啟東市2020屆高考數(shù)學(xué)二輪復(fù)習(xí) 專題強(qiáng)化訓(xùn)練4(無答案)_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇省啟東市2020屆高考數(shù)學(xué)二輪復(fù)習(xí) 專題強(qiáng)化訓(xùn)練4(無答案)》由會員分享,可在線閱讀,更多相關(guān)《江蘇省啟東市2020屆高考數(shù)學(xué)二輪復(fù)習(xí) 專題強(qiáng)化訓(xùn)練4(無答案)(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、專題強(qiáng)化訓(xùn)練4 1.如圖,某城市有一塊半徑為40 m的半圓形綠化區(qū)域(以O(shè) 為圓心,AB為直徑),現(xiàn)計(jì)劃對其進(jìn)行改建.在AB的延長線上取點(diǎn)D,OD=80 m,在半圓上選定一點(diǎn)C,改建后的綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為S m2.設(shè)∠AOC=x rad. (1)寫出S關(guān)于x的函數(shù)關(guān)系式S(x),并指出x的取值范圍; (2)試問∠AOC多大時(shí),改建后的綠化區(qū)域面積S取得最大值. A B O C D L A B O M L L a b 2.如圖,某城市有一條公路從正西方通過市中心后轉(zhuǎn)向東偏北角方向的.位于該市的某大學(xué)與

2、市中心的距離,且.現(xiàn)要修筑一條鐵路L,L在OA上設(shè)一站,在OB上設(shè)一站B,鐵路在部分為直線段,且經(jīng)過大學(xué).其中,,. (1)求大學(xué)與站的距離; (2)求鐵路段的長. 3. 無錫市政府決定規(guī)劃地鐵三號線,該線起于惠山區(qū)惠山城鐵站,止于無錫新區(qū)碩放空港產(chǎn)業(yè)園內(nèi)的無錫機(jī)場站,全長28公里,目前惠山城鐵站和無錫機(jī)場站兩個(gè)站點(diǎn)已經(jīng)建好,余下的工程是在已經(jīng)建好的站點(diǎn)之間鋪設(shè)軌道和等距離修建??空?,經(jīng)有關(guān)部門預(yù)算,修建一個(gè)??空镜馁M(fèi)用為6400萬元,鋪設(shè)距離為公里的相鄰兩個(gè)??空局g的軌道費(fèi)用為,設(shè)余下工程的總費(fèi)用為萬元.(??空疚挥谲壍纼蓚?cè),不影響軌道總長度) (1)試

3、將表示成的函數(shù); (2)需要建多少個(gè)??空静拍苁构こ藤M(fèi)用最小,并求最小值. 4.一個(gè)玩具盤由一個(gè)直徑為2米的半圓O和一個(gè)矩形ABCD構(gòu)成,AB=1米,如圖所示,小球從A點(diǎn)出發(fā)以大小為5v的速度沿半圓O軌道滾到某點(diǎn)E處,經(jīng)彈射器以6v的速度沿與點(diǎn)E切線垂直的方向彈射到落袋區(qū)BC內(nèi),落點(diǎn)記為F,設(shè)∠AOE=θ弧度,小球從A到F所需時(shí)間為T. (1)試將T表示為θ的函數(shù)T(θ),并寫出定義域; (2)求時(shí)間T最短時(shí)θ的值. 江蘇省啟東中學(xué)高三數(shù)學(xué)二輪專題強(qiáng)化訓(xùn)練2020.1

4、 題型二實(shí)際應(yīng)用問題 強(qiáng)化訓(xùn)練(2) 1. 如圖,摩天輪的半徑為,點(diǎn)距地面的高度為,摩天輪作逆時(shí)針勻速轉(zhuǎn)動(dòng),每轉(zhuǎn)一圈,摩天輪上點(diǎn)的起始位置在最低點(diǎn)處. (1)試確定在時(shí)刻()時(shí)點(diǎn)距離地面的高度; (2)在摩天輪轉(zhuǎn)動(dòng)的一圈內(nèi),有多長時(shí)間點(diǎn)距離地面超過? 2. 圖1是某種稱為 “凹槽”的機(jī)械部件的示意圖,圖2是凹槽的橫截面(陰影部分)示意圖,其中四邊形是矩形,弧是半圓,凹槽的橫截面的周長為.若凹槽的強(qiáng)度等于橫截面的面積與邊的乘積,設(shè),. (1)寫出關(guān)于函數(shù)表達(dá)式,并指出的取值范圍; (2)求當(dāng)取何值時(shí),凹槽

5、的強(qiáng)度最大. 3. 如圖,O為總信號源點(diǎn),A,B,C是三個(gè)居民區(qū),已知A,B都在O的正東方向上,OA = 10 ,OB = 20 ,C在O的北偏西45° 方向上,CO =. (1)求居民區(qū)A與C的距離; (2)現(xiàn)要經(jīng)過點(diǎn)O鋪設(shè)一條總光纜直線EF(E在直線OA的上方),并從A,B,C分別鋪設(shè)三條最短分光纜連接到總光纜EF.假設(shè)鋪設(shè)每條分光纜的費(fèi)用與其長度的平方成正比,比例系數(shù)為m(m為常數(shù)).設(shè)∠AOE = θ(0≤θ <),鋪設(shè)三條分光纜的總費(fèi)用為w(元). ① 求w關(guān)于θ的函數(shù)表達(dá)式; ② 求w的最小值及此時(shí)的值. [] [Z#xx

6、#k.Com] 4. 如圖所示,某市準(zhǔn)備在一個(gè)湖泊的一側(cè)修建一條直路OC;另一側(cè)修建一條觀光大道,它的前一段OD是以O(shè)為頂點(diǎn),x軸為對稱軸,開口向右的拋物線的一部分,后一段DBC是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<),x∈[4,8]時(shí)的圖象,圖象的最高點(diǎn)為B(5,),DF⊥OC,垂足為F. (I)求函數(shù)y=Asin(ωx+φ)的解析式; (II)若在湖泊內(nèi)修建如圖所示的矩形水上樂園PMFE,問點(diǎn)P落在曲線OD上何處時(shí),水上樂園的面積最大? 江蘇省啟東中學(xué)高三數(shù)學(xué)二輪專題強(qiáng)化訓(xùn)練2020.1

7、 題型二實(shí)際應(yīng)用問題 強(qiáng)化訓(xùn)練(3) 1. 某企業(yè)投入81萬元經(jīng)銷某產(chǎn)品,經(jīng)銷時(shí)間共60個(gè)月,市場調(diào)研表明,該企業(yè)在經(jīng)銷這個(gè)產(chǎn)品期間第x個(gè)月的利潤(單位:萬元),為了獲得更多的利潤,企業(yè)將每月獲得的利潤投入到次月的經(jīng)營中,記第x個(gè)月的當(dāng)月利潤率,例如:. (1)求g(10);(2)求第x個(gè)月的當(dāng)月利潤率g(x); (3)該企業(yè)經(jīng)銷此產(chǎn)品期間,哪個(gè)月的當(dāng)月利潤率最大,并求該月的當(dāng)月利潤率. 2.一房產(chǎn)商競標(biāo)得一塊扇形OPQ地皮,其圓心角∠POQ=,半徑為R=200m,房產(chǎn)商

8、欲在此地皮上修建一棟平面圖為矩形的商住樓,為使得地皮的使用率最大,準(zhǔn)備了兩種設(shè)計(jì)方案如圖,方案一:矩形ABCD的一邊AB在半徑OP上,C在圓弧上,D在半徑OQ;方案二:矩形EFGH的頂點(diǎn)在圓弧上,頂點(diǎn)G,H分別在兩條半徑上.請你通過計(jì)算,為房產(chǎn)商提供決策建議. 3. 如圖,OM,ON是兩條海岸線,Q為大海中一個(gè)小島,A為海岸線OM上的一個(gè)碼頭.已知,,Q到海岸線OM,ON的距離分別為3 km, km.現(xiàn)要在海岸線ON上再建一個(gè)碼頭B,使得水上旅游線路AB(直線)經(jīng)過小島Q. (1)求水上旅游線路AB的長; (2)若小島正北方向距離小島6 km處的海中有一個(gè)圓形強(qiáng)水波P,

9、水波生成t h時(shí)的半徑為(其中,R).強(qiáng)水波開始生成時(shí),一游輪以 km/h的速度自碼頭A開往碼頭B,問強(qiáng)水波是否會波及游輪的航行,并說明理由. 4.如圖所示,某街道居委會擬在地段的居民樓正南方向的空白地段上建一個(gè)活動(dòng)中心,其中米.活動(dòng)中心東西走向,與居民樓平行. 從東向西看活動(dòng)中心的截面圖的下部分是長方形,上部分是以為直徑的半圓. 為了保證居民樓住戶的采光要求,活動(dòng)中心在與半圓相切的太陽光線照射下落在居民樓上的影長不超過米,其中該太陽光線與水平線的夾角滿足. (1)若設(shè)計(jì)米,米,問能否保證上述采光要求? F A B E D G C ←

10、南 居 民 樓 活 動(dòng) 中 心 (2)在保證上述采光要求的前提下,如何設(shè)計(jì)與的長度,可使得活動(dòng)中心的截面面積最大?(注:計(jì)算中取3) 江蘇省啟東中學(xué)高三數(shù)學(xué)二輪專題強(qiáng)化訓(xùn)練2020.1 題型二實(shí)際應(yīng)用問題 強(qiáng)化訓(xùn)練(4) 1. 如圖,太湖一個(gè)角形湖灣( 常數(shù)為銳角). 擬用長 度為(為常數(shù))的圍網(wǎng)圍成一個(gè)養(yǎng)殖區(qū),有以下兩種方案可供選擇: 方案一 如圖1,圍成扇形養(yǎng)殖區(qū),其中; 方案二

11、 如圖2,圍成三角形養(yǎng)殖區(qū),其中; (1)求方案一中養(yǎng)殖區(qū)的面積; (2)求方案二中養(yǎng)殖區(qū)的最大面積; (3)為使養(yǎng)殖區(qū)的面積最大,應(yīng)選擇何種方案?并說明理由. 2. 如圖,有一塊矩形空地,,,現(xiàn)規(guī)劃在該空地四邊形建一個(gè)商業(yè)區(qū),其中頂點(diǎn)為商業(yè)區(qū)四個(gè)入口,且入口在邊上(不包含頂點(diǎn)),入口分別在邊上,,,矩形內(nèi)其余區(qū)域均為綠化區(qū)。 (1)設(shè),以點(diǎn)為坐標(biāo)原點(diǎn),直線為軸,建立直角坐標(biāo)系,如圖所示。 ①求直線的方程 ②求的取值范圍。 (2)設(shè)商業(yè)區(qū)域的面積為,綠化區(qū)域的面積為,問入口如何選址,即為何值時(shí),可使得該商業(yè)區(qū)域的環(huán)境舒適度指數(shù)最大?

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲