《2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題限時(shí)集訓(xùn)9 直線(xiàn)與圓 理》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題限時(shí)集訓(xùn)9 直線(xiàn)與圓 理(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專(zhuān)題限時(shí)集訓(xùn)(九) 直線(xiàn)與圓
[專(zhuān)題通關(guān)練]
(建議用時(shí):30分鐘)
1.(2019·江陰模擬)點(diǎn)P是直線(xiàn)x+y-2=0上的動(dòng)點(diǎn),點(diǎn)Q是圓x2+y2=1上的動(dòng)點(diǎn),則線(xiàn)段PQ長(zhǎng)的最小值為( )
A.-1 B.1
C.+1 D.2
A [根據(jù)題意,圓x2+y2=1的圓心為(0,0),半徑r=1,圓心(0,0)到直線(xiàn)x+y-2=0的距離d==,
則線(xiàn)段PQ長(zhǎng)的最小值為-1,故選A.]
2.直線(xiàn)l1:mx-2y+1=0,l2:x-(m-1)y-1=0,則“m=2”是“l(fā)1∥l2”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必
2、要條件
C [由l1∥l2得-m(m-1)=1×(-2),得m=2或m=-1,經(jīng)驗(yàn)證,當(dāng)m=-1時(shí),直線(xiàn)l1與l2重合,不合題意.所以“m=2”是“l(fā)1∥l2”的充要條件,故選C.]
3.圓x2-4x+y2=0與圓x2+y2+4x+3=0的公切線(xiàn)共有( )
A.1條 B.2條
C.3條 D.4條
D [根據(jù)題意,圓x2-4x+y2=0,即(x-2)2+y2=4,其圓心坐標(biāo)為(2,0),半徑為2;
圓x2+y2+4x+3=0,即圓(x+2)2+y2=1,其圓心坐標(biāo)為(-2,0),半徑為1;
則兩圓的圓心距為4,兩圓半徑和為3,
因?yàn)?>3,所以?xún)蓤A的位置關(guān)系是外離,故兩圓的公切
3、線(xiàn)共4條.故選D.]
4.直線(xiàn)y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長(zhǎng)為2,則直線(xiàn)的傾斜角為( )
A.或 B.-或
C.-或 D.
A [由題意可知,圓心P(2,3),半徑r=2,
∴圓心P到直線(xiàn)y=kx+3的距離d=,
由d2+=r2,可得+3=4,解得k=±.
設(shè)直線(xiàn)的傾斜角為α,則tan α=±,又α∈[0,π),
∴α=或.]
5.在平面直角坐標(biāo)系xOy中,以(-2,0)為圓心且與直線(xiàn)(3m+1)x+(1-2m)y-5=0(m∈R)相切的所有圓中,面積最大的圓的標(biāo)準(zhǔn)方程是( )
A.(x+2)2+y2=16 B.(x+2)2+y2=20
4、C.(x+2)2+y2=25 D.(x+2)2+y2=36
C [將直線(xiàn)(3m+1)x+(1-2m)y-5=0變形為(3x-2y)m+(x+y-5)=0.
由得
即直線(xiàn)恒過(guò)定點(diǎn)M(2,3).
設(shè)圓心為P,即P(-2,0),由題意可知,
當(dāng)圓的半徑r=|MP|時(shí),
圓的面積最大,此時(shí)|MP|2=r2=25.
即圓的標(biāo)準(zhǔn)方程為(x+2)2+y2=25.]
6.若P(2,-1)為圓(x-1)2+y2=25的弦AB的中點(diǎn),則直線(xiàn)AB的方程是________.
x-y-3=0 [記題中圓的圓心為O,則O(1,0),因?yàn)镻(2,-1)是弦AB的中點(diǎn),所以直線(xiàn)AB與直線(xiàn)OP垂直,易知直線(xiàn)O
5、P的斜率為-1,所以直線(xiàn)AB的斜率為1,故直線(xiàn)AB的方程為x-y-3=0.]
7.若圓x2+y2=4與圓x2+y2+ax+2ay-9=0(a>0)相交,公共弦的長(zhǎng)為2,則a=________.
[聯(lián)立兩圓方程
可得公共弦所在直線(xiàn)方程為ax+2ay-5=0,
故圓心(0,0)到直線(xiàn)ax+2ay-5=0的距離為
=(a>0).故2=2,
解得a2=,因?yàn)閍>0,所以a=.]
8.設(shè)P為直線(xiàn)3x-4y+11=0上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓C:x2+y2-2x-2y+1=0的兩條切線(xiàn),切點(diǎn)分別為A,B,則四邊形PACB的面積的最小值為_(kāi)_______.
[圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-
6、1)2=1,圓心為C(1,1),半徑為r=1,根據(jù)對(duì)稱(chēng)性可知,四邊形PACB的面積為2S△APC=2×|PA|r=|PA|=,要使四邊形PACB的面積最小,則只需|PC|最小,最小值為圓心到直線(xiàn)l:3x-4y+11=0的距離d===2.
所以四邊形PACB面積的最小值為==.]
[能力提升練]
(建議用時(shí):20分鐘)
9.實(shí)數(shù)x,y滿(mǎn)足x2+y2+2x=0,則的取值范圍是( )
A.[-,] B.(-∞,-]∪[,+∞)
C. D.∪
C [設(shè)=t,,則tx-y-t=0與圓(x+1)2+y2=1有交點(diǎn),∴圓心(-1,0)到直線(xiàn)tx-y-t=0的距離d=≤1,解得-≤t≤.故
7、選C.]
10.(2019·贛州模擬)已知?jiǎng)又本€(xiàn)y=kx-1+k(k∈R)與圓C:x2+y2-2x+4y-4=0(圓心為C)交于點(diǎn)A、B,則弦AB最短時(shí),△ABC的面積為 ( )
A.3 B.6
C. D.2
D [根據(jù)題意,圓C:x2+y2-2x+4y-4=0可化為(x-1)2+(y+2)2=9,其圓心為(1,-2),半徑r=3.動(dòng)直線(xiàn)y=kx-1+k,即y+1=k(x+1),恒過(guò)定點(diǎn)P(-1,-1),又由(-1-1)2+(-1+2)2<9,可知點(diǎn)P(-1,-1)在圓C的內(nèi)部,動(dòng)直線(xiàn)y=kx-1+k(k∈R)與圓C:x2+y2-2x+4y-4=0(圓心為C)交于點(diǎn)A、B,當(dāng)P為AB
8、的中點(diǎn)即CP與AB垂直時(shí),弦AB最短,此時(shí)|CP|=,弦AB的長(zhǎng)度為2×=4,
此時(shí),△ABC的面積S=×|CP|×|AB|=×4×=2.故選D.]
11.若圓C:x2+=n的圓心為橢圓M:x2+my2=1的一個(gè)焦點(diǎn),且圓C經(jīng)過(guò)橢圓M的另一個(gè)焦點(diǎn),則圓C的標(biāo)準(zhǔn)方程為_(kāi)_______.
x2+(y+1)2=4 [∵圓C的圓心為,
∴=,解得m=.又圓C經(jīng)過(guò)M的另一個(gè)焦點(diǎn),則圓C經(jīng)過(guò)點(diǎn)(0,1),從而n=4,故圓C的標(biāo)準(zhǔn)方程為x2+(y+1)2=4.]
12.(2019·九江二模)已知圓E經(jīng)過(guò)M(-1,0),N(0,1),P三點(diǎn).
(1)求圓E的方程;
(2)若過(guò)點(diǎn)C(2,2)作圓E
9、的兩條切線(xiàn),切點(diǎn)分別是A,B,求直線(xiàn)AB的方程.
[解](1)根據(jù)題意,設(shè)圓E的圓心E坐標(biāo)為(a,b),半徑為r,
則有解得
則圓E的方程為x2+y2=1.
(2)根據(jù)題意,過(guò)點(diǎn)C(2,2)作圓E的兩條切線(xiàn),切點(diǎn)分別是A,B,
設(shè)以C為圓心,CA為半徑的圓為圓C,其半徑為R,
則有R=|CA|==,
則圓C的方程為(x-2)2+(y-2)2=7,
即x2+y2-4x-4y+1=0,
又由直線(xiàn)AB為圓E與圓C的公共弦所在的直線(xiàn),則有
解得2x+2y-1=0,則AB的方程為:2x+2y-1=0.
題號(hào)
內(nèi)容
押題依據(jù)
1
點(diǎn)到直線(xiàn)的距離公式,數(shù)形結(jié)合思想
由動(dòng)態(tài)
10、的觀(guān)點(diǎn),分析直線(xiàn)與圓的位置關(guān)系,并通過(guò)數(shù)形結(jié)合的思想及方程思想確定方程的具體位置,體現(xiàn)了高考的最新動(dòng)向
2
直線(xiàn)與圓的位置關(guān)系,平面向量,軌跡問(wèn)題,根與系數(shù)的關(guān)系
用代數(shù)的方法研究直線(xiàn)與圓的位置關(guān)系可以巧妙的將函數(shù)與方程,根與系數(shù)的關(guān)系等知識(shí)交匯在一起,考查考生的運(yùn)算能力和等價(jià)轉(zhuǎn)化能力
【押題1】 已知直線(xiàn)l:x-2y+4=0,圓C:(x-1)2+(y+5)2=80,那么圓C上到l的距離為的點(diǎn)一共有( )
A.1個(gè) B.2個(gè)
C.3個(gè) D.4個(gè)
C [由圓C:(x-1)2+(y+5)2=80,可得圓心C(1,-5),半徑R=4, 又圓心C(1,-5)到直線(xiàn)x-2y+4
11、=0的距離d===3, 如圖所示,由圖象可知,點(diǎn)A,B,D到直線(xiàn)x-2y+4=0的距離都為,所以圓C上到l的距離為的點(diǎn)一共3個(gè),故選C.]
【押題2】 已知圓C:(x-2)2+(y-2)2=16,點(diǎn)A(10,0).
(1)設(shè)點(diǎn)P是圓C上的一個(gè)動(dòng)點(diǎn),求AP的中點(diǎn)Q的軌跡方程;
(2)直線(xiàn)l:kx-y-10k=0與圓C交于M,N,求·的值.
[解](1)設(shè)Q(x,y),P(x0,y0),則(x0-2)2+(y0-2)2=16,
由x=,y=,解得x0=2x-10,y0=2y.
代入圓的方程可得:(2x-10-2)2+(2y-2)2=16,
即(x-6)2+(y-1)2=4.
∴AP
12、的中點(diǎn)Q的軌跡方程為:(x-6)2+(y-1)2=4.
(2)直線(xiàn)l:kx-y-10k=0與圓C交于M(x1,y1),N(x2,y2),
把直線(xiàn)l的方程代入圓的方程可得:(x-2)2+(kx-10k-2)2=16,
化為:(1+k2)x2-(20k2+4k+4)x+100k2+40k-12=0.
Δ>0.
∴x1x2=,x1+x2=.
∴·=(x1-10,y1)(x2-10,y2)=(x1-10)(x2-10)+y1y2=(x1-10)(x2-10)+(kx1-10k)(kx2-10k)
=(1+k2)x1x2-(10k2+10)(x1+x2)+100+100k2
=(1+k2)-(10k2+10)+100+100k2=48.
- 5 -