《(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練24 直線與圓及圓錐曲線 文》由會員分享,可在線閱讀,更多相關(guān)《(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練24 直線與圓及圓錐曲線 文(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題突破練24 直線與圓及圓錐曲線
1.(節(jié)選)已知圓M:x2+y2=r2(r>0)與直線l1:x-3y+4=0相切,設(shè)點A為圓上一動點,AB⊥x軸于B,且動點N滿足AB=2NB,設(shè)動點N的軌跡為曲線C.
(1)求曲線C的方程;
(2)略.
2.(2019甘肅武威第十八中學(xué)高三上學(xué)期期末考試)已知圓C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.
(1)求證:圓C1和圓C2相交;
(2)求圓C1和圓C2的公共弦所在直線的方程和公共弦長.
3.
已知圓O:x2+y2=4,點A(3
2、,0),以線段AB為直徑的圓內(nèi)切于圓O,記點B的軌跡為Γ.
(1)求曲線Γ的方程;
(2)直線AB交圓O于C,D兩點,當B為CD的中點時,求直線AB的方程.
4.(2019全國卷1,理19)已知拋物線C:y2=3x的焦點為F,斜率為32的直線l與C的交點為A,B,與x軸的交點為P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若AP=3PB,求|AB|.
5.(2019天津河北區(qū)高三二模)已知橢圓C:x2a2+y2b2=1(a>b>0)過點P(2,1),且短軸長為22.
(1)求橢圓C的方程;
3、
(2)過點P作x軸的垂線l,設(shè)點A為第四象限內(nèi)一點且在橢圓C上(點A不在直線l上),點A關(guān)于l的對稱點為A',直線A'P與橢圓C交于另一點B.設(shè)O為坐標原點,判斷直線AB與直線OP的位置關(guān)系,并說明理由.
6.(2019天津第一中學(xué)高三下學(xué)期第五次月考)已知橢圓C1:x2a2+y2b2=1(a>b>0)的左、右焦點為F1,F2,F2的坐標滿足圓Q方程(x-2)2+(y-1)2=1,且圓心Q滿足|QF1|+|QF2|=2a.
(1)求橢圓C1的方程;
(2)過點P(0,1)的直線l1:y=kx+1交橢圓C1于A,B兩點,過P與l1垂直的直線l2交圓Q
4、于C,D兩點,M為線段CD中點,若△MAB的面積為625,求k的值.
參考答案
專題突破練24 直線與圓及圓錐曲線
1.解(1)設(shè)動點N(x,y),A(x0,y0),因為AB⊥x軸于B,所以B(x0,0).
已知圓M的方程為x2+y2=r2,由題意得r=|4|1+3=2,
所以圓M的方程為x2+y2=4.
由題意,AB=2NB,所以(0,-y0)=2(x0-x,-y),即x0=x,y0=2y.
將A(x,2y)代入圓M:x2+y2=4,得動點N的軌跡方程為x24+y2=1.
(2)略.
2.(1)證明圓C1的圓心C1(1,3),半徑
5、r1=11,圓C2的圓心C2(5,6),半徑r2=4,
兩圓圓心距d=|C1C2|=5,r1+r2=11+4,|r1-r2|=4-11,
所以|r1-r2|
6、)=2-|OM|+12|AB|,即|AB|+2|OM|=4.
取A關(guān)于y軸的對稱點A',連接A'B,則|A'B|=2|OM|,故|AB|+2|OM|=|AB|+|A'B|=4.
所以點B的軌跡是以A',A為焦點,長軸長為4的橢圓.
其中a=2,c=3,b=1,則曲線Γ的方程為x24+y2=1.
(2)因為B為CD的中點,所以O(shè)B⊥CD,則OB⊥AB.
設(shè)B(x0,y0),則x0(x0-3)+y02=0.
又x024+y02=1,解得x0=23,y0=±23.
則kOB=±22,kAB=?2,則直線AB的方程為y=±2(x-3),
即2x-y-6=0或2x+y-6=0.
7、
4.解設(shè)直線l:y=32x+t,A(x1,y1),B(x2,y2).
(1)由題設(shè)得F34,0,
故|AF|+|BF|=x1+x2+32,
由題設(shè)可得x1+x2=52.
由y=32x+t,y2=3x可得9x2+12(t-1)x+4t2=0,則x1+x2=-12(t-1)9.
從而-12(t-1)9=52,得t=-78.
所以l的方程為y=32x-78.
(2)由AP=3PB可得y1=-3y2.
由y=32x+t,y2=3x可得y2-2y+2t=0.
所以y1+y2=2.
從而-3y2+y2=2,故y2=-1,y1=3.
代入C的方程得x1=3,x2=13.
故|AB|
8、=4133.
5.解(1)由題意得4a2+1b2=1,2b=22,
解得a=22,b=2.
∴橢圓C的方程為x28+y22=1.
(2)直線AB與直線OP平行,證明如下:
由題意知,直線PA的斜率存在且不為零.
PA,PA'關(guān)于l:x=2對稱,則直線PA與PA'斜率互為相反數(shù).
設(shè)直線PA:y-1=k(x-2),PB:y-1=-k(x-2).
設(shè)A(x1,y1),B(x2,y2).
由x28+y22=1,y=k(x-2)+1,消去y得(4k2+1)x2-(16k2-8k)x+16k2-16k-4=0,
∴2x1=16k2-16k-44k2+1.
∴x1=8k2-8k-24
9、k2+1.
同理,x2=8k2+8k-24k2+1.
∴x1-x2=-16k4k2+1.
∵y1=k(x1-2)+1,y2=-k(x2-2)+1,
∴y1-y2=k(x1+x2)-4k=-8k4k2+1.
∵A在第四象限,∴k≠0,且A不在直線OP上,∴kAB=y1-y2x1-x2=12.
又kOP=12,∴kAB=kOP.
故直線AB與直線OP平行.
6.解(1)因為F2的坐標滿足圓Q方程(x-2)2+(y-1)2=1,故當y=0時,x=2,即F2(2,0),故c=2.
因為圓心Q滿足|QF1|+|QF2|=2a,所以點Q(2,1)在橢圓上,故有2a2+1b2=1.
聯(lián)立
10、方程組2a2+1b2=1,a2=b2+2,解得a=2,b=2,所以橢圓方程為x24+y22=1.
(2)因為直線l2交圓Q于C,D兩點,M為線段CD的中點,所以QM與直線l2垂直.
又因為直線l1與直線l2垂直,所以QM與直線l1平行.
所以點M到直線AB的距離即為點Q到直線AB的距離.
即點M到直線AB的距離為d=|2k|1+k2.
設(shè)點A(x1,y1),B(x2,y2).
聯(lián)立方程組x24+y22=1,y=kx+1,
解得(1+2k2)x2+4kx-2=0,Δ=b2-4ac=16k2+8(2k2+1)=32k2+8>0,
由韋達定理可得x1+x2=-4k1+2k2,x1x2
11、=-21+2k2,
則|x1-x2|=(x1+x2)2-4x1x2=(-4k1+2k2)?2-4·-21+2k2=32k2+8(1+2k2)2.
所以AB=1+k2|x1-x2|=1+k2·32k2+8(1+2k2)2.
所以△MAB的面積為12·1+k2·32k2+8(1+2k2)2·|2k|1+k2.
所以12·1+k2·32k2+8(1+2k2)2·|2k|1+k2=625.
即8k2+2(1+2k2)2·|k|=65,
兩邊同時平方,化簡得,28k4-47k2-18=0,解得k2=2或k2=-928(舍).
故k=±2.
此時l2:y=±22x+1.
圓心Q到l2的距離h=±22×2-1+112+1=23<1成立.
綜上所述,k=±2.
10