2020高考數(shù)學(xué)刷題首選卷 第五章 不等式、推理與證明、算法初步與復(fù)數(shù) 考點測試39 復(fù)數(shù) 文(含解析)
《2020高考數(shù)學(xué)刷題首選卷 第五章 不等式、推理與證明、算法初步與復(fù)數(shù) 考點測試39 復(fù)數(shù) 文(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學(xué)刷題首選卷 第五章 不等式、推理與證明、算法初步與復(fù)數(shù) 考點測試39 復(fù)數(shù) 文(含解析)(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、考點測試39 復(fù)數(shù) 高考概覽 考綱研讀 1.理解復(fù)數(shù)的基本概念 2.理解復(fù)數(shù)相等的充要條件 3.了解復(fù)數(shù)的代數(shù)表示法及其幾何意義 4.會進行復(fù)數(shù)代數(shù)形式的四則運算 5.了解復(fù)數(shù)代數(shù)形式的加、減運算的幾何意義 一、基礎(chǔ)小題 1.設(shè)z1=2+bi,z2=a+i,當z1+z2=0時,復(fù)數(shù)a+bi=( ) A.1+i B.2+i C.3 D.-2-i 答案 D 解析 ∵z1+z2=(2+bi)+(a+i)=(2+a)+(b+1)i=0,∴∴∴a+bi=-2-i,故選D. 2.若(1+i)+(2-3i)=a+bi(a,b∈R,i是虛數(shù)單位),則a,b的值分別
2、等于( ) A.3,-2 B.3,2 C.3,-3 D.-1,4 答案 A 解析 由于(1+i)+(2-3i)=3-2i,所以3-2i=a+bi(a,b∈R),由復(fù)數(shù)相等定義,a=3,且b=-2,故選A. 3.若復(fù)數(shù)z滿足z+(3-4i)=1,則z的虛部是( ) A.-2 B.4 C.3 D.-4 答案 B 解析 z=1-(3-4i)=-2+4i,所以z的虛部是4,故選B. 4.如圖,在復(fù)平面內(nèi),點A表示復(fù)數(shù)z,由圖中表示z的共軛復(fù)數(shù)的點是( ) A.A B.B C.C D.D 答案 B 解析 表示復(fù)數(shù)z的點A與表示z的共軛復(fù)數(shù)的點關(guān)于x軸
3、對稱,∴B點表示.選B. 5.已知復(fù)數(shù)z=1-i,則=( ) A.2 B.-2 C.2i D.-2i 答案 A 解析?。剑?,故選A. 6.已知z=(i是虛數(shù)單位),則復(fù)數(shù)z的實部是( ) A.0 B.-1 C.1 D.2 答案 A 解析 因為z===i,所以復(fù)數(shù)z的實部為0,故選A. 7.復(fù)數(shù)=( ) A.--i B.-+i C.-i D.+i 答案 C 解析 == ===-i. 8.設(shè)i是虛數(shù)單位,復(fù)數(shù)為純虛數(shù),則實數(shù)a為( ) A.2 B.-2 C.- D. 答案 A 解析 解法一:因為= =為純虛數(shù),所以2-a=0,a
4、=2. 解法二:令=mi(m≠0),∴1+ai=(2-i)mi=m+2mi.∴∴a=2. 9.在復(fù)平面內(nèi),向量對應(yīng)的復(fù)數(shù)是2+i,向量對應(yīng)的復(fù)數(shù)是-1-3i,則向量對應(yīng)的復(fù)數(shù)為( ) A.1-2i B.-1+2i C.3+4i D.-3-4i 答案 D 解析?。剑剑?-3i-2-i=-3-4i,故選D. 10.設(shè)z是復(fù)數(shù),則下列命題中的假命題是( ) A.若z2≥0,則z是實數(shù) B.若z2<0,則z是虛數(shù) C.若z是虛數(shù),則z2≥0 D.若z是純虛數(shù),則z2<0 答案 C 解析 設(shè)z=a+bi(a,b∈R),z2=a2-b2+2abi,由z2≥0,得即或所以
5、a=0時b=0,b=0時a∈R.故z是實數(shù),所以A為真命題;由于實數(shù)的平方不小于0,所以當z2<0時,z一定是虛數(shù),且為純虛數(shù),故B為真命題;由于i2=-1<0,故C為假命題,D為真命題. 11.已知是復(fù)數(shù)z的共軛復(fù)數(shù),若z·=2(+i),則z=( ) A.-1-i B.-1+i C.1+i D.1-i 答案 C 解析 設(shè)z=a+bi(a,b∈R),由z·=2(+i),有(a+bi)(a-bi)=2(a-bi+i),解得a=b=1,所以z=1+i,故選C. 12.在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點是Z(1,-2),則復(fù)數(shù)z的共軛復(fù)數(shù)=________. 答案 1+2i 解析 由復(fù)
6、數(shù)z在復(fù)平面內(nèi)的坐標有z=1-2i,所以共軛復(fù)數(shù)=1+2i. 二、高考小題 13.(2017·全國卷Ⅲ)設(shè)復(fù)數(shù)z滿足(1+i)z=2i,則|z|=( ) A. B. C. D.2 答案 C 解析 解法一:∵(1+i)z=2i,∴z====1+i.∴|z|==. 解法二:∵(1+i)z=2i,∴|1+i|·|z|=|2i|,即·|z|=2,∴|z|=. 14.(2018·全國卷Ⅰ)設(shè)z=+2i,則|z|=( ) A.0 B. C.1 D. 答案 C 解析 因為z=+2i=+2i=+2i=i,所以|z|==1,故選C. 15.(2018·全國卷Ⅱ)=( )
7、 A.--i B.-+i C.--i D.-+i 答案 D 解析 ∵==,∴選D. 16.(2018·全國卷Ⅲ)(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-i D.3+i 答案 D 解析 (1+i)(2-i)=2-i+2i-i2=3+i,故選D. 17.(2018·浙江高考)復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是( ) A.1+i B.1-i C.-1+i D.-1-i 答案 B 解析 ∵==1+i,∴的共軛復(fù)數(shù)為1-i. 18.(2018·北京高考)在復(fù)平面內(nèi),復(fù)數(shù)的共軛復(fù)數(shù)對應(yīng)的點位于( ) A.第一象限 B.第二象限 C
8、.第三象限 D.第四象限 答案 D 解析 ∵==+i,∴其共軛復(fù)數(shù)為-i,又-i在復(fù)平面內(nèi)對應(yīng)的點,-在第四象限,故選D. 19.(2017·北京高考)若復(fù)數(shù)(1-i)(a+i)在復(fù)平面內(nèi)對應(yīng)的點在第二象限,則實數(shù)a的取值范圍是( ) A.(-∞,1) B.(-∞,-1) C.(1,+∞) D.(-1,+∞) 答案 B 解析 ∵復(fù)數(shù)(1-i)(a+i)=a+1+(1-a)i在復(fù)平面內(nèi)對應(yīng)的點在第二象限,∴∴a<-1.故選B. 20.(2017·山東高考)已知a∈R,i是虛數(shù)單位.若z=a+i,z·=4,則a=( ) A.1或-1 B.或- C.- D. 答案
9、 A 解析 ∵z=a+i,∴=a-i.又∵z·=4,∴(a+i)(a-i)=4,∴a2+3=4,∴a2=1,∴a=±1.故選A. 21.(2017·全國卷Ⅰ)設(shè)有下面四個命題: p1:若復(fù)數(shù)z滿足∈R,則z∈R; p2:若復(fù)數(shù)z滿足z2∈R,則z∈R; p3:若復(fù)數(shù)z1,z2滿足z1z2∈R,則z1=2; p4:若復(fù)數(shù)z∈R,則∈R. 其中的真命題為( ) A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4 答案 B 解析 對于命題p1,設(shè)z=a+bi(a,b∈R),由==∈R,得b=0,則z∈R成立,故正確;對于命題p2,設(shè)z=a+bi(a,b∈R),
10、由z2=(a2-b2)+2abi∈R,得a·b=0,則a=0或b=0,復(fù)數(shù)z為實數(shù)或純虛數(shù),故錯誤;對于命題p3,設(shè)z1=a+bi(a,b∈R),z2=c+di(c,d∈R),由z1·z2=(ac-bd)+(ad+bc)i∈R,得ad+bc=0,不一定有z1=2,故錯誤;對于命題p4,設(shè)z=a+bi(a,b∈R),則由z∈R,得b=0,所以=a∈R成立,故正確.故選B. 22.(2018·天津高考)i是虛數(shù)單位,復(fù)數(shù)=________. 答案 4-i 解析?。剑剑?-i. 23.(2016·天津高考)已知a,b∈R,i是虛數(shù)單位.若(1+i)·(1-bi)=a,則的值為________
11、. 答案 2 解析 由(1+i)(1-bi)=a,得1+b+(1-b)i=a,則解得所以=2. 24.(2017·浙江高考)已知a,b∈R,(a+bi)2=3+4i(i是虛數(shù)單位),則a2+b2=________,ab=________. 答案 5 2 解析 解法一:∵(a+bi)2=a2-b2+2abi,a,b∈R, ∴?? ∴a2+b2=2a2-3=5,ab=2. 解法二:由解法一知ab=2, 又|(a+bi)2|=|3+4i|=5,∴a2+b2=5. 三、模擬小題 25.(2018·鄭州質(zhì)檢一)復(fù)數(shù)(i為虛數(shù)單位)的值為( ) A.-1-3i B.-1+3i
12、 C.1+3i D.1-3i 答案 A 解析?。剑剑?-3i,故選A. 26.(2018·唐山模擬)復(fù)數(shù)z=的共軛復(fù)數(shù)為( ) A.1+2i B.1-2i C.2-2i D.-1+2i 答案 B 解析 因為z===1+2i,所以=1-2i. 27.(2018·沈陽質(zhì)檢一)已知i為虛數(shù)單位,復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案 B 解析 因為==--i,所以其共軛復(fù)數(shù)為-+i,在復(fù)平面內(nèi)所對應(yīng)的點為-,,在第二象限,故選B. 28.(2018·長春質(zhì)檢二)已知復(fù)數(shù)z=1+i(i是虛數(shù)單位)
13、,則z2+z=( ) A.1-2i B.1+3i C.1-3i D.1+2i 答案 B 解析 z2+z=(1+i)2+1+i=1+2i+i2+1+i=1+3i.故選B. 29.(2018·湖北八市聯(lián)考)設(shè)復(fù)數(shù)z=(i為虛數(shù)單位),則下列命題錯誤的是( ) A.|z|= B.=1-i C.z的虛部為i D.z在復(fù)平面內(nèi)對應(yīng)的點位于第一象限 答案 C 解析 依題意,有z==1+i,則其虛部為1,故選C. 30.(2018·石家莊質(zhì)檢二)已知復(fù)數(shù)z滿足zi=i+m(i為虛數(shù)單位,m∈R),若z的虛部為1,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點在( ) A.第一象限 B.第二
14、象限 C.第三象限 D.第四象限 答案 A 解析 依題意,設(shè)z=a+i(a∈R),則由zi=i+m,得ai-1=i+m,從而故z=1+i,在復(fù)平面內(nèi)對應(yīng)的點為(1,1),在第一象限,故選A. 31.(2018·太原模擬)設(shè)復(fù)數(shù)z滿足=i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)為( ) A.i B.-i C.2i D.-2i 答案 A 解析 由=i,整理得(1+i)z=1-i,z===-i,所以z的共軛復(fù)數(shù)為i.故選A. 32.(2018·南昌一模)歐拉公式eix=cosx+isinx(i為虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴大到復(fù)數(shù),建立了三角函數(shù)和
15、指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽為“數(shù)學(xué)中的天橋”,根據(jù)歐拉公式可知,ei表示的復(fù)數(shù)位于復(fù)平面內(nèi)的( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案 A 解析 由歐拉公式ei=cos+isin=+i,所以ei表示的復(fù)數(shù)位于復(fù)平面內(nèi)的第一象限.選A. 33.(2018·衡陽三模)若復(fù)數(shù)z滿足z+i=(i為虛數(shù)單位),則復(fù)數(shù)z的虛部為( ) A.2 B.2i C.-2 D.-2i 答案 C 解析 由z+i=,得z+i=-i,z=-2i,故復(fù)數(shù)z的虛部為-2,故選C. 34.(2018·青島模擬)在復(fù)平面內(nèi),設(shè)復(fù)數(shù)z1,z2對應(yīng)的點關(guān)于
16、虛軸對稱,z1=1+2i(i是虛數(shù)單位),則z1z2=( ) A.5 B.-5 C.-1-4i D.-1+4i 答案 B 解析 由題意z2=-1+2i,所以z1z2=(1+2i)(-1+2i)=-1+4i2=-5.故選B. 一、高考大題 本考點在近三年高考中未涉及此題型. 二、模擬大題 1.(2018·成都診斷)已知關(guān)于t的一元二次方程t2+(2+i)t+2xy+(x-y)i=0(x,y∈R). (1)當方程有實根時,求點(x,y)的軌跡方程; (2)求方程的實根的取值范圍. 解 (1)設(shè)實根為m, 則m2+(2+i)m+2xy+(x-y)i=0, 即(m2
17、+2m+2xy)+(m+x-y)i=0. 根據(jù)復(fù)數(shù)相等的充要條件得 由②得m=y(tǒng)-x, 代入①得(y-x)2+2(y-x)+2xy=0, 即(x-1)2+(y+1)2=2?、? 故點(x,y)的軌跡方程為(x-1)2+(y+1)2=2. (2)由(1)知點(x,y)的軌跡是一個圓,圓心為(1,-1),半徑r=, 設(shè)方程的實根為m, 則直線m+x-y=0與圓(x-1)2+(y+1)2=2有公共點, 所以≤,即|m+2|≤2,即-4≤m≤0. 故方程的實根的取值范圍是[-4,0]. 2.(2018·九江高二質(zhì)檢)已知M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若M∪P=P,求實數(shù)m的值. 解 ∵M∪P=P,∴M?P. 即(m2-2m)+(m2+m-2)i=-1或(m2-2m)+(m2+m-2)i=4i. 當(m2-2m)+(m2+m-2)i=-1時, 有解得m=1; 當(m2-2m)+(m2+m-2)i=4i時, 有 解得m=2. 綜上可知m=1或m=2. 10
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)2圖形與幾何第7課時圖形的位置練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)2圖形與幾何第1課時圖形的認識與測量1平面圖形的認識練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時比和比例2作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊4比例1比例的意義和基本性質(zhì)第3課時解比例練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊3圓柱與圓錐1圓柱第7課時圓柱的體積3作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊3圓柱與圓錐1圓柱第1節(jié)圓柱的認識作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊2百分數(shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊1負數(shù)第1課時負數(shù)的初步認識作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)上冊期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級數(shù)學(xué)上冊期末豐收園作業(yè)課件蘇教版
- 2023年六年級數(shù)學(xué)上冊易錯清單十二課件新人教版
- 標準工時講義
- 2021年一年級語文上冊第六單元知識要點習(xí)題課件新人教版
- 2022春一年級語文下冊課文5識字測評習(xí)題課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時數(shù)學(xué)思考1練習(xí)課件新人教版