2019年高考數(shù)學(xué) 高考題和高考模擬題分項(xiàng)版匯編 專題03 導(dǎo)數(shù)及其應(yīng)用 文(含解析)

上傳人:Sc****h 文檔編號:122803093 上傳時(shí)間:2022-07-21 格式:DOCX 頁數(shù):28 大?。?.40MB
收藏 版權(quán)申訴 舉報(bào) 下載
2019年高考數(shù)學(xué) 高考題和高考模擬題分項(xiàng)版匯編 專題03 導(dǎo)數(shù)及其應(yīng)用 文(含解析)_第1頁
第1頁 / 共28頁
2019年高考數(shù)學(xué) 高考題和高考模擬題分項(xiàng)版匯編 專題03 導(dǎo)數(shù)及其應(yīng)用 文(含解析)_第2頁
第2頁 / 共28頁
2019年高考數(shù)學(xué) 高考題和高考模擬題分項(xiàng)版匯編 專題03 導(dǎo)數(shù)及其應(yīng)用 文(含解析)_第3頁
第3頁 / 共28頁

下載文檔到電腦,查找使用更方便

26 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019年高考數(shù)學(xué) 高考題和高考模擬題分項(xiàng)版匯編 專題03 導(dǎo)數(shù)及其應(yīng)用 文(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué) 高考題和高考模擬題分項(xiàng)版匯編 專題03 導(dǎo)數(shù)及其應(yīng)用 文(含解析)(28頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、專題03 導(dǎo)數(shù)及其應(yīng)用 1.【2019年高考全國Ⅱ卷文數(shù)】曲線y=2sinx+cosx在點(diǎn)(π,-1)處的切線方程為 A. B. C. D. 【答案】C 【解析】 則在點(diǎn)處的切線方程為,即. 故選C. 【名師點(diǎn)睛】本題考查利用導(dǎo)數(shù)工具研究曲線的切線方程,滲透了直觀想象、邏輯推理和數(shù)學(xué)運(yùn)算素養(yǎng).采取導(dǎo)數(shù)法,利用函數(shù)與方程思想解題.學(xué)生易在非切點(diǎn)處直接求導(dǎo)數(shù)而出錯(cuò),首先證明已知點(diǎn)是否為切點(diǎn),若是切點(diǎn),可以直接利用導(dǎo)數(shù)求解;若不是切點(diǎn),設(shè)出切點(diǎn),再求導(dǎo),然后列出切線方程. 2.【2019年高考全國Ⅲ卷文數(shù)】已知曲線在點(diǎn)(1,ae)處的切線方程為y=2x+b,則 A. B.a(chǎn)=

2、e,b=1 C. D., 【答案】D 【解析】∵ ∴切線的斜率,, 將代入,得. 故選D. 【名師點(diǎn)睛】本題求解的關(guān)鍵是利用導(dǎo)數(shù)的幾何意義和點(diǎn)在曲線上得到含有a,b的等式,從而求解,屬于常考題型. 3.【2019年高考浙江】已知,函數(shù).若函數(shù)恰有3個(gè)零點(diǎn),則 A.a(chǎn)<–1,b<0 B.a(chǎn)<–1,b>0 C.a(chǎn)>–1,b<0 D.a(chǎn)>–1,b>0 【答案】C 【解析】當(dāng)x<0時(shí),y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x=b1-a, 則y=f(x)﹣ax﹣b最多有一個(gè)零點(diǎn); 當(dāng)x≥0時(shí),y=f(x)﹣ax﹣b=13x3-12(a+1)x2

3、+ax﹣ax﹣b=13x3-12(a+1)x2﹣b, , 當(dāng)a+1≤0,即a≤﹣1時(shí),y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上單調(diào)遞增, 則y=f(x)﹣ax﹣b最多有一個(gè)零點(diǎn),不合題意; 當(dāng)a+1>0,即a>﹣1時(shí),令y′>0得x∈(a+1,+∞),此時(shí)函數(shù)單調(diào)遞增, 令y′<0得x∈[0,a+1),此時(shí)函數(shù)單調(diào)遞減,則函數(shù)最多有2個(gè)零點(diǎn). 根據(jù)題意,函數(shù)y=f(x)﹣ax﹣b恰有3個(gè)零點(diǎn)?函數(shù)y=f(x)﹣ax﹣b在(﹣∞,0)上有一個(gè)零點(diǎn),在[0,+∞)上有2個(gè)零點(diǎn), 如圖: ∴b1-a<0且-b>013(a+1)3-12(a+1)(a+1)2-b<0, 解

4、得b<0,1﹣a>0,b>-16(a+1)3, 則a>–1,b<0. 故選C. 【名師點(diǎn)睛】本題考查函數(shù)與方程,導(dǎo)數(shù)的應(yīng)用.當(dāng)x<0時(shí),y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b最多有一個(gè)零點(diǎn);當(dāng)x≥0時(shí),y=f(x)﹣ax﹣b=13x3-12(a+1)x2﹣b,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫出函數(shù)的草圖,從而結(jié)合題意可列不等式組求解. 4.【2019年高考全國Ⅰ卷文數(shù)】曲線在點(diǎn)處的切線方程為____________. 【答案】 【解析】 所以切線的斜率, 則曲線在點(diǎn)處的切線方程為,即. 【名師點(diǎn)睛】準(zhǔn)確求導(dǎo)數(shù)是進(jìn)一步計(jì)算的基礎(chǔ),本題易因?yàn)閷?dǎo)數(shù)的運(yùn)算法則掌

5、握不熟,而導(dǎo)致計(jì)算錯(cuò)誤.求導(dǎo)要“慢”,計(jì)算要準(zhǔn),是解答此類問題的基本要求. 5.【2019年高考天津文數(shù)】曲線在點(diǎn)處的切線方程為__________. 【答案】 【解析】∵, ∴, 故所求的切線方程為,即. 【名師點(diǎn)睛】曲線切線方程的求法: (1)以曲線上的點(diǎn)(x0,f(x0))為切點(diǎn)的切線方程的求解步驟: ①求出函數(shù)f(x)的導(dǎo)數(shù)f′(x); ②求切線的斜率f′(x0); ③寫出切線方程y-f(x0)=f′(x0)(x-x0),并化簡. (2)如果已知點(diǎn)(x1,y1)不在曲線上,則設(shè)出切點(diǎn)(x0,y0),解方程組得切點(diǎn)(x0,y0),進(jìn)而確定切線方程. 6.【2019

6、年高考江蘇】在平面直角坐標(biāo)系中,P是曲線上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線的距離的最小值是 ▲ . 【答案】4 【解析】由,得, 設(shè)斜率為的直線與曲線切于, 由得(舍去), ∴曲線上,點(diǎn)到直線的距離最小,最小值為. 故答案為. 【名師點(diǎn)睛】本題考查曲線上任意一點(diǎn)到已知直線的最小距離,滲透了直觀想象和數(shù)學(xué)運(yùn)算素養(yǎng).采取導(dǎo)數(shù)法,利用數(shù)形結(jié)合和轉(zhuǎn)化與化歸思想解題. 7.【2019年高考江蘇】在平面直角坐標(biāo)系中,點(diǎn)A在曲線y=lnx上,且該曲線在點(diǎn)A處的切線經(jīng)過點(diǎn)(-e,-1)(e為自然對數(shù)的底數(shù)),則點(diǎn)A的坐標(biāo)是 ▲ . 【答案】 【解析】設(shè)出切點(diǎn)坐標(biāo),得到切線方程,然后求解

7、方程得到橫坐標(biāo)的值,可得切點(diǎn)坐標(biāo). 設(shè)點(diǎn),則. 又, 當(dāng)時(shí),, 則曲線在點(diǎn)A處的切線為, 即, 將點(diǎn)代入,得, 即, 考察函數(shù), 當(dāng)時(shí),,當(dāng)時(shí),, 且, 當(dāng)時(shí),單調(diào)遞增, 注意到, 故存在唯一的實(shí)數(shù)根, 此時(shí), 故點(diǎn)的坐標(biāo)為. 【名師點(diǎn)睛】導(dǎo)數(shù)運(yùn)算及切線的理解應(yīng)注意的問題: 一是利用公式求導(dǎo)時(shí)要特別注意除法公式中分子的符號,防止與乘法公式混淆. 二是直線與曲線公共點(diǎn)的個(gè)數(shù)不是切線的本質(zhì),直線與曲線只有一個(gè)公共點(diǎn),直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個(gè)或兩個(gè)以上的公共點(diǎn). 8.【2019年高考全國Ⅰ卷文數(shù)】已知函數(shù)f(x)=2

8、sinx-xcosx-x,f′(x)為f(x)的導(dǎo)數(shù). (1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn); (2)若x∈[0,π]時(shí),f(x)≥ax,求a的取值范圍. 【答案】(1)見解析;(2). 【解析】(1)設(shè),則. 當(dāng)時(shí),;當(dāng)時(shí),,所以在單調(diào)遞增,在單調(diào)遞減. 又,故在存在唯一零點(diǎn). 所以在存在唯一零點(diǎn). (2)由題設(shè)知,可得a≤0. 由(1)知,在只有一個(gè)零點(diǎn),設(shè)為,且當(dāng)時(shí),;當(dāng)時(shí),,所以在單調(diào)遞增,在單調(diào)遞減. 又,所以,當(dāng)時(shí),. 又當(dāng)時(shí),ax≤0,故. 因此,a的取值范圍是. 【名師點(diǎn)睛】本題考查利用導(dǎo)數(shù)討論函數(shù)零點(diǎn)個(gè)數(shù)、根據(jù)恒成立的不等式求解參數(shù)范圍

9、的問題.對于此類端點(diǎn)值恰為恒成立不等式取等的值的問題,通常采用構(gòu)造函數(shù)的方式,將問題轉(zhuǎn)變成函數(shù)最值與零之間的比較,進(jìn)而通過導(dǎo)函數(shù)的正負(fù)來確定所構(gòu)造函數(shù)的單調(diào)性,從而得到最值. 9.【2019年高考全國Ⅱ卷文數(shù)】已知函數(shù).證明: (1)存在唯一的極值點(diǎn); (2)有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為倒數(shù). 【答案】(1)見解析;(2)見解析. 【解析】(1)的定義域?yàn)椋?,+). . 因?yàn)閱握{(diào)遞增,單調(diào)遞減,所以單調(diào)遞增,又, ,故存在唯一,使得. 又當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增. 因此,存在唯一的極值點(diǎn). (2)由(1)知,又,所以在內(nèi)存在唯一根. 由得. 又,故是在

10、的唯一根. 綜上,有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為倒數(shù). 【名師點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,通常需要對函數(shù)求導(dǎo),用導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性、極值,以及函數(shù)零點(diǎn)的問題,屬于常考題型. 10.【2019年高考天津文數(shù)】設(shè)函數(shù),其中. (1)若a≤0,討論的單調(diào)性; (2)若, (i)證明恰有兩個(gè)零點(diǎn); (ii)設(shè)為的極值點(diǎn),為的零點(diǎn),且,證明. 【答案】(1)在內(nèi)單調(diào)遞增.;(2)(i)見解析;(ii)見解析. 【解析】(1)解:由已知,的定義域?yàn)?,? . 因此當(dāng)a≤0時(shí),,從而,所以在內(nèi)單調(diào)遞增. (2)證明:(i)由(Ⅰ)知.令,由, 可知在內(nèi)單調(diào)遞減,又,且

11、. 故在內(nèi)有唯一解,從而在內(nèi)有唯一解,不妨設(shè)為,則.當(dāng)時(shí),,所以在內(nèi)單調(diào)遞增;當(dāng)時(shí),,所以在內(nèi)單調(diào)遞減,因此是的唯一極值點(diǎn). 令,則當(dāng)時(shí),,故在內(nèi)單調(diào)遞減,從而當(dāng)時(shí),,所以.從而 , 又因?yàn)?,所以在?nèi)有唯一零點(diǎn).又在內(nèi)有唯一零點(diǎn)1,從而,在內(nèi)恰有兩個(gè)零點(diǎn). (ii)由題意,即從而,即.因?yàn)楫?dāng)時(shí),,又,故,兩邊取對數(shù),得,于是 , 整理得. 【名師點(diǎn)睛】本小題主要考查導(dǎo)數(shù)的運(yùn)算、不等式證明、運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì)等基礎(chǔ)知識和方法.考查函數(shù)思想、化歸與轉(zhuǎn)化思想.考查綜合分析問題和解決問題的能力. 11.【2019年高考全國Ⅲ卷文數(shù)】已知函數(shù). (1)討論的單調(diào)性; (2)當(dāng)0

12、0,則當(dāng)時(shí),;當(dāng)時(shí),.故在單調(diào)遞增,在單調(diào)遞減; 若a=0,在單調(diào)遞增; 若a<0,則當(dāng)時(shí),;當(dāng)時(shí),.故在單調(diào)遞增,在單調(diào)遞減. (2)當(dāng)時(shí),由(1)知,在單調(diào)遞減,在單調(diào)遞增,所以在[0,1]的最小值為,最大值為或.于是 , 所以 當(dāng)時(shí),可知單調(diào)遞減,所以的取值范圍是. 當(dāng)時(shí),單調(diào)遞增,所以的取值范圍是. 綜上,的取值范圍是. 【名師點(diǎn)睛】這是一道常規(guī)的導(dǎo)數(shù)題目,難度比往年降低了不少.考查函數(shù)的單調(diào)性,最大值、最小值的計(jì)算

13、. 12.【2019年高考北京文數(shù)】已知函數(shù). (1)求曲線的斜率為1的切線方程; (2)當(dāng)時(shí),求證:; (3)設(shè),記在區(qū)間上的最大值為M(a),當(dāng)M(a)最小時(shí),求a的值. 【答案】(1)與;(2)見解析;(3). 【解析】(1)由得. 令,即,得或. 又,, 所以曲線的斜率為1的切線方程是與, 即與. (2)令. 由得. 令得或. 的情況如下: 所以的最小值為,最大值為. 故,即. (3)由(2)知, 當(dāng)時(shí),; 當(dāng)時(shí),; 當(dāng)時(shí),. 綜上,當(dāng)最小時(shí),.

14、【名師點(diǎn)睛】本題主要考查利用導(dǎo)函數(shù)研究函數(shù)的切線方程,利用導(dǎo)函數(shù)證明不等式的方法,分類討論的數(shù)學(xué)思想等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力. 13.【2019年高考浙江】已知實(shí)數(shù),設(shè)函數(shù) (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間; (2)對任意均有求的取值范圍. 注:e=2.71828…為自然對數(shù)的底數(shù). 【答案】(1)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2). 【解析】(1)當(dāng)時(shí),. , 所以,函數(shù)的單調(diào)遞減區(qū)間為(0,3),單調(diào)遞增區(qū)間為(3,+). (2)由,得. 當(dāng)時(shí),等價(jià)于. 令,則. 設(shè), 則. (i)當(dāng)時(shí),,則 . 記,則 . 故

15、1 0 + 單調(diào)遞減 極小值 單調(diào)遞增 所以,. 因此,. (ii)當(dāng)時(shí),. 令,則, 故在上單調(diào)遞增,所以. 由(i)得,. 所以,. 因此. 由(i)(ii)知對任意,, 即對任意,均有. 綜上所述,所求a的取值范圍是. 【名師點(diǎn)睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點(diǎn),對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(

16、4)考查數(shù)形結(jié)合思想的應(yīng)用. 14.【2019年高考江蘇】設(shè)函數(shù)、為f(x)的導(dǎo)函數(shù). (1)若a=b=c,f(4)=8,求a的值; (2)若a≠b,b=c,且f(x)和的零點(diǎn)均在集合中,求f(x)的極小值; (3)若,且f(x)的極大值為M,求證:M≤. 【答案】(1);(2)見解析;(3)見解析. 【解析】(1)因?yàn)椋裕? 因?yàn)?,所以,解得? (2)因?yàn)椋? 所以, 從而.令,得或. 因?yàn)槎荚诩现?,且? 所以. 此時(shí),. 令,得或.列表如下: 1 + 0 – 0 + 極大值 極小值 所以的極小值為.

17、(3)因?yàn)椋裕? . 因?yàn)?,所以? 則有2個(gè)不同的零點(diǎn),設(shè)為. 由,得. 列表如下: + 0 – 0 + 極大值 極小值 所以的極大值. 解法一: .因此. 解法二: 因?yàn)?,所以? 當(dāng)時(shí),. 令,則. 令,得.列表如下: + 0 – 極大值 所以當(dāng)時(shí),取得極大值,且是最大值,故. 所以當(dāng)時(shí),,因此. 【名師點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考查綜合運(yùn)用數(shù)學(xué)思想方法分析與解決問題以及邏輯推理能力. 15.【河北省武邑中學(xué)2019屆高三第二次

18、調(diào)研考試數(shù)學(xué)】函數(shù)f(x)=x2-2lnx的單調(diào)減區(qū)間是 A.(0,1] B.[1,+∞) C.(-∞,-1]∪(0,1] D.[-1,0)∪(0,1] 【答案】A 【解析】f'(x)=2x-2x=2x2-2x(x>0), 令f'(x)≤0,解得:0

19、題考查利用導(dǎo)數(shù)的幾何意義求解在某一點(diǎn)處的切線方程,關(guān)鍵是能夠利用構(gòu)造方程組的方式求得函數(shù)的解析式. 17.【云南省玉溪市第一中學(xué)2019屆高三第二次調(diào)研考試數(shù)學(xué)】函數(shù)的最小值為 A. B. C. D. 【答案】C 【解析】由題得,, 令,解得, 則當(dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù), 所以處的函數(shù)值為最小值,且. 故選C. 【名師點(diǎn)睛】本題考查用導(dǎo)數(shù)求函數(shù)最值,解此類題首先確定函數(shù)的定義域,其次判斷函數(shù)的單調(diào)性,確定最值點(diǎn),最后代回原函數(shù)求得最值. 18.【四川省內(nèi)江市2019屆高三第三次模擬考試數(shù)學(xué)】若函數(shù)f(x)=12ax2+xlnx-x存在單調(diào)遞增區(qū)間,則a的取值范

20、圍是 A. B. C. D. 【答案】B 【解析】, ∴在x∈上成立, 即ax+0在x∈上成立, 即a在x∈上成立. 令g(x),則g′(x), ∴g(x)在(0,e)上單調(diào)遞減,在(e,+∞)上單調(diào)遞增, ∴g(x)的最小值為g(e)=, ∴a>. 故選B. 【名師點(diǎn)睛】本題考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及轉(zhuǎn)化化歸思想的運(yùn)用,屬中檔題. 19.【山西省太原市2019屆高三模擬試題(一)數(shù)學(xué)】已知定義在(0,+∞)上的函數(shù)f(x)滿足xf'(x)-f(x)<0,且f(2)=2,則fex-ex>0的解集是 A.(-∞,ln2) B.(ln2,+∞) C.0

21、,e2 D.e2,+∞ 【答案】A 【解析】令gx=fxx,g'x=xf'x-fxx2<0, ∴g(x)在(0,+∞)上單調(diào)遞減,且g2=f22=1, 故fex-ex>0等價(jià)為fexex>f22,即gex>g2, 故ex<2,即xc>b C.a(chǎn)>b>c D.b>a>c 【答案】

22、D 【解析】依題意,得,,. 令fx=lnxx,所以f'x=1-lnxx2. 所以函數(shù)fx在0,e上單調(diào)遞增,在e,+∞上單調(diào)遞減, 所以fxmax=fe=1e=b,且f3>f8,即a>c, 所以b>a>c. 故選D. 【名師點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,構(gòu)造出函數(shù)是解題的關(guān)鍵,屬于中檔題. 21.【安徽省毛坦廠中學(xué)2019屆高三校區(qū)4月聯(lián)考數(shù)學(xué)】已知fx=lnx+1-aex,若關(guān)于x的不等式fx<0恒成立,則實(shí)數(shù)a的取值范圍是 A. B. C. D. 【答案】D 【解析】由恒成立得恒成立, 設(shè),則. 設(shè),則恒成立, ∴gx在0,+∞上單調(diào)遞減

23、, 又∵g1=0,∴當(dāng)0g1=0,即h'x>0; 當(dāng)x>1時(shí),gx1e. 故選D. 【名師點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的最值,不等式恒成立問題,分離參數(shù)是常見的方法,屬于中檔題. 22.【遼寧省丹東市2019屆高三總復(fù)習(xí)質(zhì)量測試】若是函數(shù)的極值點(diǎn),則的值為 A.-2 B.3 C.-2或3 D.-3或2 【答案】B 【解析】, 由題意可知,即或, 當(dāng)時(shí),, 當(dāng)或時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減, 顯然是函數(shù)的極值點(diǎn);

24、當(dāng)時(shí),, 所以函數(shù)是上的單調(diào)遞增函數(shù),沒有極值,不符合題意,舍去. 故. 故選B. 【名師點(diǎn)睛】本題考查了已知函數(shù)的極值,求參數(shù)的問題.本題易錯(cuò)的地方是求出的值,沒有通過單調(diào)性來驗(yàn)證是不是函數(shù)的極值點(diǎn),也就是說使得導(dǎo)函數(shù)為零的自變量的值,不一定是極值點(diǎn). 23.【黑龍江省大慶市第一中學(xué)2019屆高三下學(xué)期第四次模擬(最后一卷)考試】已知奇函數(shù)是定義在上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為,當(dāng)時(shí),有,則不等式的解集為 A. B. C. D. 【答案】A 【解析】設(shè), 因?yàn)闉樯系钠婧瘮?shù), 所以, 即為上的奇函數(shù) 對求導(dǎo),得, 而當(dāng)時(shí),有, 故時(shí),,即單調(diào)遞增, 所以在上單調(diào)遞

25、增, 則不等式即, 即, 即, 所以,解得. 故選A. 【名師點(diǎn)睛】本題考查構(gòu)造函數(shù)解不等式,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,函數(shù)的奇偶性,題目較綜合,有一定的技巧性,屬于中檔題. 24.【重慶西南大學(xué)附屬中學(xué)校2019屆高三第十次月考數(shù)學(xué)】曲線在點(diǎn)處的切線與直線垂直,則________. 【答案】 【解析】因?yàn)?,所以? 因此,曲線在點(diǎn)處的切線斜率為, 又該切線與直線垂直,所以. 故答案為. 【名師點(diǎn)睛】本題主要考查導(dǎo)數(shù)在某點(diǎn)處的切線斜率問題,熟記導(dǎo)數(shù)的幾何意義即可求解,屬于??碱}型. 25.【河南省新鄉(xiāng)市2019屆高三下學(xué)期第二次模擬考試數(shù)學(xué)】已知函數(shù)f(x)=ex-al

26、nx在[1,2]上單調(diào)遞增,則a的取值范圍是__________. 【答案】(-∞,e] 【解析】由題意知f'(x)=ex-ax≥0在[1,2]上恒成立,則a≤(xex)min, 令g(x)=xex,,知g(x)在[1,2]上單調(diào)遞增, 則g(x)的最小值為g1=e, 故a≤e. 故答案為(-∞,e]. 【名師點(diǎn)睛】對于恒成立或者有解求參的問題,常用方法有:變量分離,參變分離,轉(zhuǎn)化為函數(shù)最值問題;或者直接求函數(shù)最值,使得函數(shù)最值大于或者小于0;或者分離成兩個(gè)函數(shù),使得一個(gè)函數(shù)恒大于或小于另一個(gè)函數(shù). 26.【廣東省深圳市高級中學(xué)2019屆高三適應(yīng)性考試(6月)數(shù)學(xué)】已知函數(shù)若方

27、程恰有兩個(gè)不同的實(shí)數(shù)根,則的最大值是______. 【答案】 【解析】作出函數(shù)的圖象如圖所示, 由,可得,即, 不妨設(shè),則, 令,則, , 令,則, 當(dāng)時(shí),,在上單調(diào)遞增; 當(dāng)時(shí),,在上單調(diào)遞減, 當(dāng)時(shí),取得最大值,為. 故答案為. 【名師點(diǎn)睛】本題主要考查方程的根與圖象交點(diǎn)的關(guān)系,考查了利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性以及求函數(shù)的極值與最值,屬于難題.求函數(shù)的極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)判斷在的根左右兩側(cè)值的符號,如果左正右負(fù)(左增右減),那么在處取極大值,如果左負(fù)右正(左減右增),那么在處取極小值.

28、(5)如果只有一個(gè)極值點(diǎn),則在該點(diǎn)處取得極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點(diǎn)處的函數(shù)值與極值的大小. 27.【山東省煙臺市2019屆高三3月診斷性測試(一模)數(shù)學(xué)】已知函數(shù),. (1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程; (2)設(shè)函數(shù),其中是自然對數(shù)的底數(shù),討論的單調(diào)性并判斷有無極值,有極值時(shí)求出極值. 【答案】(1); (2)當(dāng)時(shí),在上單調(diào)遞增,無極值;當(dāng)時(shí),在和單調(diào)遞增,在單調(diào)遞減,極大值為,極小值為. 【解析】(1)由題意,所以當(dāng)時(shí),,, 因此曲線在點(diǎn)處的切線方程是, 即. (2)因?yàn)椋? 所以 , 令,則, 令得, 當(dāng)時(shí),,單調(diào)遞減, 當(dāng)時(shí),,單

29、調(diào)遞增, 所以當(dāng)時(shí),, 也就說,對于恒有. 當(dāng)時(shí),, 在上單調(diào)遞增,無極值; 當(dāng)時(shí),令,可得. 當(dāng)或時(shí),,單調(diào)遞增, 當(dāng)時(shí),,單調(diào)遞減, 因此,當(dāng)時(shí),取得極大值; 當(dāng)時(shí),取得極小值. 綜上所述: 當(dāng)時(shí),在上單調(diào)遞增,無極值; 當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減, 函數(shù)既有極大值,又有極小值, 極大值為, 極小值為. 【名師點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,極值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道綜合題. 28.【陜西省2019屆高三第三次聯(lián)考數(shù)學(xué)】已知函數(shù)f(x)=lnx-ax,g(x)=x2,a∈R. (1)求函數(shù)f(x)的極值點(diǎn); (2)

30、若f(x)≤g(x)恒成立,求a的取值范圍. 【答案】(1)極大值點(diǎn)為1a,無極小值點(diǎn).(2)a≥-1. 【解析】(1)的定義域?yàn)?,+∞,f'x=1x-a, 當(dāng)a≤0時(shí),f'x=1x-a>0, 所以fx在0,+∞上單調(diào)遞增,無極值點(diǎn); 當(dāng)a>0時(shí),解f'x=1x-a>0得01a, 所以fx在0,1a上單調(diào)遞增,在1a,+∞上單調(diào)遞減, 所以函數(shù)fx有極大值點(diǎn),為1a,無極小值點(diǎn). (2)由條件可得lnx-x2-ax≤0(x>0)恒成立, 則當(dāng)x>0時(shí),a≥lnxx-x恒成立, 令hx=lnxx-x(x>0),則h'x=1-x2-ln

31、xx2, 令kx=1-x2-lnx(x>0), 則當(dāng)x>0時(shí),k'x=-2x-1x<0,所以kx在0,+∞上為減函數(shù). 又k1=0,所以在0,1上,h'x>0;在1,+∞上,h'x<0. 所以hx在0,1上為增函數(shù),在1,+∞上為減函數(shù), 所以hxmax=h1=-1,所以a≥-1. 【名師點(diǎn)睛】對于函數(shù)恒成立或者有解求參的問題,常用方法有:變量分離,參變分離,轉(zhuǎn)化為函數(shù)最值問題;或者直接求函數(shù)最值,使得函數(shù)最值大于或者小于0;或者分離成兩個(gè)函數(shù),使得一個(gè)函數(shù)恒大于或小于另一個(gè)函數(shù). 29.【山東省濟(jì)寧市2019屆高三二模數(shù)學(xué)】已知函數(shù)f(x)=lnx-xex+ax(a∈R).

32、(1)若函數(shù)f(x)在[1,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍; (2)若a=1,求f(x)的最大值. 【答案】(1)a≤2e-1;(2)f(x)max=-1. 【解析】(1)由題意知,f'(x)=1x-(ex+xex)+a=1x-(x+1)ex+a≤0在[1,+∞)上恒成立, 所以a≤(x+1)ex-1x在[1,+∞)上恒成立. 令g(x)=(x+1)ex-1x,則g'(x)=(x+2)ex+1x2>0, 所以g(x)在[1,+∞)上單調(diào)遞增,所以g(x)min=g(1)=2e-1, 所以a≤2e-1. (2)當(dāng)a=1時(shí),f(x)=lnx-xex+x(x>0). 則f'(

33、x)=1x-(x+1)ex+1=(x+1)(1x-ex), 令m(x)=1x-ex, 則m'(x)=-1x2-ex<0, 所以m(x)在(0,+∞)上單調(diào)遞減. 由于m(12)>0,m(1)<0,所以存在x0>0滿足m(x0)=0,即ex0=1x0. 當(dāng)x∈(0,x0)時(shí),m(x)>0,f'(x)>0;當(dāng)x∈(x0,+∞)時(shí),m(x)<0,f'(x)<0. 所以f(x)在(0,x0)上單調(diào)遞增,在(x0,+∞)上單調(diào)遞減. 所以f(x)max=fx0=lnx0-x0ex0+x0, 因?yàn)閑x0=1x0,所以x0=-lnx0, 所以f(x0)=-x0-1+x0=-1, 所以f(

34、x)max=-1. 【名師點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,最值,零點(diǎn)存在性定理及其應(yīng)用,分類討論的數(shù)學(xué)思想等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力. 30.【福建省2019年三明市高三畢業(yè)班質(zhì)量檢查測試】已知函數(shù)f(x)=exex-ax+a有兩個(gè)極值點(diǎn)x1,x2. (1)求a的取值范圍; (2)求證:2x1x2

35、, 令, 所以, 當(dāng)x<1時(shí),g'(x)>0,當(dāng)x>1時(shí),g'(x)<0, 所以g(x)在(-∞,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減, 又因?yàn)椋? 當(dāng)x→-∞時(shí),g(x)→-∞,當(dāng)x→+∞時(shí),g(x)→0, 因此,當(dāng)時(shí),f(x)有2個(gè)極值點(diǎn), 即a的取值范圍為(2e,+∞). (2)由(1)不妨設(shè)0

36、∈(1,+∞)上恒成立, 記, , 所以h(t)在區(qū)間(1,+∞)上單調(diào)遞減, 所以h(t)

37、(2)-2e

38、x)在(-∞,-1),(1,+∞)上單調(diào)遞減,在(-1,1)上單調(diào)遞增. 所以h(x)有極小值h(-1)=-2,極大值h(1)=2. (2)由f(x)=mex-x2+3=0,得m=x2-3ex. 所以“f(x)在區(qū)間[-2?,?4]上有兩個(gè)零點(diǎn)”等價(jià)于“直線y=m與曲線g(x)=x2-3ex,x∈[-2?,?4]有且只有兩個(gè)公共點(diǎn)”. 對函數(shù)g(x)求導(dǎo),得g'(x)=-x2+2x+3ex. 由g'(x)=0,解得x1=-1,x2=3. 當(dāng)x變化時(shí),g'(x)與g(x)的變化情況如下表所示: x (-2,-1) -1 (-1,3) 3 (3,

39、4) g'(x) - 0 + 0 - g(x) ↘ 極小值 ↗ 極大值 ↘ 所以g(x)在(-2,-1),(3,4)上單調(diào)遞減,在(-1,3)上單調(diào)遞增. 又因?yàn)間(-2)=e2,g(-1)=-2e,g(3)=6e3g(-1), 所以當(dāng)-2e

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲