《高考數(shù)學(xué)二輪復(fù)習(xí):12 圓錐曲線的綜合問題》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí):12 圓錐曲線的綜合問題(11頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高考數(shù)學(xué)二輪復(fù)習(xí):12 圓錐曲線的綜合問題
姓名:________ 班級(jí):________ 成績:________
一、 解答題 (共15題;共145分)
1. (10分) (2017高二上平頂山期末) 已知拋物線C:y=2x2 , 直線y=kx+2交C于A,B兩點(diǎn),M是線段AB的中點(diǎn),過M作x軸的垂線交C于點(diǎn)N.
(Ⅰ)證明:拋物線C在點(diǎn)N處的切線與AB平行;
(Ⅱ)是否存在實(shí)數(shù)k使 ,若存在,求k的值;若不存在,說明理由.
2. (10分) (2019高二下富陽月考) 已知拋物線 的頂點(diǎn)在原點(diǎn),焦點(diǎn) 在 軸上,若點(diǎn) 在拋物
2、線上.
(1) 求拋物線 的方程;
(2) 如圖,過點(diǎn) 且斜率為 的直線 與拋物線 的另一個(gè)交點(diǎn)為 ,過點(diǎn) 與直線 垂直的直線 交 軸于點(diǎn) ,求直線 的斜率的取值范圍.
3. (10分) (2018高二下邱縣期末) 在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)),若以原點(diǎn) 為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知圓 的極坐標(biāo)方程為 ,設(shè) 是圓 上任一點(diǎn),連結(jié) 并延長到 ,使 .
(1) 求點(diǎn) 軌跡的直角坐標(biāo)方程;
(2) 求點(diǎn) 軌跡的直角坐標(biāo)方程;
(3) 若直線 與點(diǎn) 軌跡相交于 兩點(diǎn),點(diǎn) 的直角坐標(biāo)為
3、 ,求 的值.
(4) 若直線 與點(diǎn) 軌跡相交于 兩點(diǎn),點(diǎn) 的直角坐標(biāo)為 ,求 的值.
4. (10分) (2018高二上綦江期末) 已知橢圓C: 的離心率為 ,點(diǎn) 在橢圓C上.
(1) 求橢圓C的方程;
(2) 設(shè)動(dòng)直線 與橢圓C有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)O為圓心的圓,滿足此圓與 相交兩點(diǎn) , (兩點(diǎn)均不在坐標(biāo)軸上),且使得直線 , 的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.
5. (10分) 已知橢圓 的左、右焦點(diǎn)分別為 ,其離心率 ,點(diǎn) 為橢圓上的一個(gè)動(dòng)點(diǎn),△ 面積的最大值為 .
(1) 求橢
4、圓的標(biāo)準(zhǔn)方程;
(2) 若 是橢圓上不重合的四個(gè)點(diǎn), 與 相交于點(diǎn) , 求 的取值范圍.
6. (10分) (2018高二上巴彥月考) 在平面直角坐標(biāo)系 中,已知圓 的半徑為2,圓心在 軸的正半軸上,且與直線 相切.
(1) 求圓 的方程。
(2) 在圓 上,是否存在點(diǎn) ,使得直線 與圓 相交于不同的兩點(diǎn) ,且△ 的面積最大?若存在,求出點(diǎn) 的坐標(biāo)及對(duì)應(yīng)的△ 的面積;若不存在,請(qǐng)說明理由.
7. (10分) 已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)為F(0,1),
(1)求拋物線C的方程;
(2)過點(diǎn)F作直線l交拋物線于A,B兩點(diǎn),若直線
5、AO,BO分別與直線y=x﹣2交于M,N兩點(diǎn),求|MN|的取值范圍.
8. (10分) (2020淮南模擬) 已知橢圓 的離心率為 , , 分別是橢圓的左右焦點(diǎn),過點(diǎn) 的直線交橢圓于 , 兩點(diǎn),且 的周長為12.
(Ⅰ)求橢圓 的方程
(Ⅱ)過點(diǎn) 作斜率為 的直線 與橢圓 交于兩點(diǎn) , ,試判斷在 軸上是否存在點(diǎn) ,使得 是以 為底邊的等腰三角形若存在,求點(diǎn) 橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說明理由.
9. (10分) (2018高二上長安期末) 一張坐標(biāo)紙上涂著圓E: 及點(diǎn)P(1,0),折疊此紙片,使P與圓周上某點(diǎn)P重合,每次折疊都會(huì)留下折
6、痕,設(shè)折痕與直線EP交于點(diǎn)M .
(1) 求 的軌跡 的方程;
(2) 直線 與C的兩個(gè)不同交點(diǎn)為A,B,且l與以EP為直徑的圓相切,若 ,求△ABO的面積的取值范圍.
10. (10分) (2018高二下海安月考) 給定橢圓C: (a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為 ,且經(jīng)過點(diǎn)(0,1).
(1) 求實(shí)數(shù)a,b的值;
(2) 若過點(diǎn)P(0,m) (m>0)的直線l與橢圓C有且只有一個(gè)公共點(diǎn),且l被橢圓C的伴隨圓C1所截得的弦長為2 ,求實(shí)數(shù)m的值.
11. (10分) (2016高二下桂林開學(xué)考) 橢圓
7、C: + =1(a>b>0)的離心率為 ,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為 .
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn).求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
12. (10分) (2018浙江) 如圖,已知點(diǎn)P是y軸左側(cè)(不含y軸)一點(diǎn),拋物線C:y2=4x上存在不同的兩點(diǎn)A , B滿足PA , PB的中點(diǎn)均在C上.
(Ⅰ)設(shè)AB中點(diǎn)為M , 證明:PM垂直于y軸;
(Ⅱ)若P是半橢圓x2+ =1(x<0)上的動(dòng)點(diǎn),求△PAB面積的取值范圍.
13. (5分) (
8、2019高二上扶余期中) 在直角坐標(biāo)系 中,過點(diǎn) 的直線與拋物線 相交于 , 兩點(diǎn),弦 的中點(diǎn) 的軌跡記為 .
(1) 求 的方程;
(2) 已知直線 與 相交于 , 兩點(diǎn).
(i)求 的取值范圍;
(ii) 軸上是否存在點(diǎn) ,使得當(dāng) 變動(dòng)時(shí),總有 ?說明理由.
14. (5分) (2016高二上岳陽期中) 設(shè)直線l:y=k(x+1)(k≠0)與橢圓3x2+y2=a2(a>0)相交于A、B兩個(gè)不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn).
(Ⅰ)證明:a2> ;
(Ⅱ)若 ,求△OAB的面積取得最大值時(shí)的橢圓方程.
15. (15分
9、) (2019高二上南通月考) 已知橢圓 的焦距為 分別為橢圓 的左、右頂點(diǎn), 為橢圓 上的兩點(diǎn)(異于 ),連結(jié) ,且 斜率是 斜率的 倍.
(1) 求橢圓 的方程;
(2) 證明:直線 恒過定點(diǎn).
第 11 頁 共 11 頁
參考答案
一、 解答題 (共15題;共145分)
1-1、
2-1、
2-2、
3-1、答案:略
3-2、答案:略
3-3、答案:略
3-4、答案:略
4-1、答案:略
4-2、答案:略
5-1、答案:略
5-2、答案:略
6-1、答案:略
6-2、答案:略
7-1、答案:略
8-1、
9-1、答案:略
9-2、答案:略
10-1、答案:略
10-2、答案:略
11-1、
12-1、
13-1、答案:略
13-2、答案:略
14-1、
15-1、答案:略
15-2、答案:略