《(浙江專用)2020版高考數(shù)學(xué)新增分大一輪復(fù)習(xí) 第六章 平面向量、復(fù)數(shù) 6.4 平面向量的應(yīng)用(第1課時(shí))課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用)2020版高考數(shù)學(xué)新增分大一輪復(fù)習(xí) 第六章 平面向量、復(fù)數(shù) 6.4 平面向量的應(yīng)用(第1課時(shí))課件.ppt(75頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、6.4平面向量的應(yīng)用,,第六章 平面向量、復(fù)數(shù),,NEIRONGSUOYIN,內(nèi)容索引,基礎(chǔ)知識(shí) 自主學(xué)習(xí),題型分類(lèi) 深度剖析,課時(shí)作業(yè),1,基礎(chǔ)知識(shí) 自主學(xué)習(xí),PART ONE,,知識(shí)梳理,1.向量在平面幾何中的應(yīng)用 (1)用向量解決常見(jiàn)平面幾何問(wèn)題的技巧:,ZHISHISHULI,,,,ab,x1y2x2y10,ab0,x1x2y1y20,(2)用向量方法解決平面幾何問(wèn)題的步驟,2.向量在解析幾何中的應(yīng)用 向量在解析幾何中的應(yīng)用,是以解析幾何中的坐標(biāo)為背景的一種向量描述.它主要強(qiáng)調(diào)向量的坐標(biāo)問(wèn)題,進(jìn)而利用直線和圓錐曲線的位置關(guān)系的相關(guān)知識(shí)來(lái)解答,坐標(biāo)的運(yùn)算是考查的主體. 3.向量與相關(guān)知識(shí)
2、的交匯 平面向量作為一種工具,常與函數(shù)(三角函數(shù))、解析幾何結(jié)合,常通過(guò)向量的線性運(yùn)算與數(shù)量積,向量的共線與垂直求解相關(guān)問(wèn)題.,1.根據(jù)你對(duì)向量知識(shí)的理解,你認(rèn)為可以利用向量方法解決哪些幾何問(wèn)題?,【概念方法微思考】,提示(1)線段的長(zhǎng)度問(wèn)題.(2)直線或線段平行問(wèn)題.(3)直線或線段垂直問(wèn)題.(4)角的問(wèn)題等.,2.如何用向量解決平面幾何問(wèn)題?,提示用向量表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題然后通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題,最后把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.,,,基礎(chǔ)自測(cè),JICHUZICE,題組一思考辨析,,,,1,2,3,4,5,6,,,,1
3、,2,3,4,5,6,,,題組二教材改編,,1,2,3,4,5,6,2.P108A組T5已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(3,4),B(5,2),C(1,4),則該三角形為 A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰直角三角形,,ABC為直角三角形.,,1,2,3,4,5,6,x2y40,,1,2,3,4,5,6,,1,2,3,4,5,6,,1,2,3,4,5,6,5,,1,2,3,4,5,6,6,2,題型分類(lèi)深度剖析,PART TWO,第1課時(shí)平面向量在幾何中的作用,,題型一向量在平面幾何中的應(yīng)用,,多維探究,命題點(diǎn)1向量和平面幾何知識(shí)的綜合,12,,,,,得(n,0)(m2
4、,m)2(n,0)(m,m), 所以n(m2)2nm,化簡(jiǎn)得m2. 故(m,m)(m2,m)2m22m12.,方法二如圖,建立平面直角坐標(biāo)系xAy. 依題意,可設(shè)點(diǎn)D(m,m), C(m2,m),B(n,0), 其中m0,n0,,,,,,當(dāng)且僅當(dāng)P,O,H三點(diǎn)共線,且P在A,B,C,D其中某一點(diǎn)處時(shí)取到等號(hào),,命題點(diǎn)2三角形的“四心”,,所以點(diǎn)P的軌跡必過(guò)ABC的重心.,答案A,答案D,則動(dòng)點(diǎn)P的軌跡一定通過(guò)ABC的垂心.,命題點(diǎn)3平面向量與解三角形,,AD為BC的中線且O為重心.又O為外心, ABC為正三角形, BAC60,故選C.,答案A,解析由題意,知DEAE4,DFAF3,,向量與平面
5、幾何綜合問(wèn)題的解法 (1)坐標(biāo)法 把幾何圖形放在適當(dāng)?shù)淖鴺?biāo)系中,則有關(guān)點(diǎn)與向量就可以用坐標(biāo)表示,這樣就能進(jìn)行相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問(wèn)題得到解決. (2)基向量法 適當(dāng)選取一組基底,溝通向量之間的聯(lián)系,利用向量間的關(guān)系構(gòu)造關(guān)于未知量的方程進(jìn)行求解.,14,D分AC的比為43,,,,,題型二向量在解析幾何中的應(yīng)用,,多維探究,命題點(diǎn)1向量共線的應(yīng)用,(4k)(k5)670, 解得k2或k11. 由k<0可知k2,則過(guò)點(diǎn)(2,1)且斜率為2的直線方程為y12(x2), 即2xy30.,2xy30,(2)已知梯形ABCD,其中ABCD,且DC2AB,三個(gè)頂點(diǎn)A(1,2),B(2,1),C(4
6、,2),則點(diǎn)D的坐標(biāo)為_(kāi)_____.,(2,4),設(shè)點(diǎn)D的坐標(biāo)為(x,y),,(4x,2y)2(1,1),即(4x,2y)(2,2),,故點(diǎn)D的坐標(biāo)為(2,4).,命題點(diǎn)2解析幾何中的最值問(wèn)題,,(xA,yA)t(xP,yP).又點(diǎn)(xP,yP)在雙曲線上,,以O(shè)為原點(diǎn),以O(shè)C為y軸建立平面坐標(biāo)系如圖所示,,命題點(diǎn)3平面向量與幾何動(dòng)點(diǎn)問(wèn)題,解析分別以AB,AD所在直線為x,y軸建立平面直角坐標(biāo)系,A為坐標(biāo)原點(diǎn),設(shè)B(m,0),M(0,n),P(x,n)(m0,n0),,,即m212,,向量在解析幾何中的“兩個(gè)”作用 (1)載體作用:向量在解析幾何問(wèn)題中出現(xiàn),多用于“包裝”,解決此類(lèi)問(wèn)題的關(guān)鍵是
7、利用向量的意義、運(yùn)算脫去“向量外衣”,導(dǎo)出曲線上點(diǎn)的坐標(biāo)之間的關(guān)系,從而解決有關(guān)距離、斜率、夾角、軌跡、最值等問(wèn)題. (2)工具作用:利用abab0(a,b為非零向量),abab(b0),可解決垂直、平行問(wèn)題,特別地,向量垂直、平行的坐標(biāo)表示對(duì)于解決解析幾何中的垂直、平行問(wèn)題是一種比較簡(jiǎn)捷的方法.,15,設(shè)A(x,y),OA與x軸正方向的夾角為,線段OP在x軸上的投影為,2,3,課時(shí)作業(yè),PART THREE,,基礎(chǔ)保分練,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,故ABC一定是直角三角形.,,1,2,3,4,5,6,7,8,9,10,11,12,13,1
8、4,15,16,,y2x6,即點(diǎn)P的軌跡是拋物線.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,解析O是ABC的外心,C45,,又由題意可知,m,n不能同時(shí)為正,mn1,,兩邊平方可得m2n21,(mn)22(m2n2)2,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,故拋物
9、線的方程為y24x.故選B.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,4,8.(2009浙江改編)設(shè)向量a,b滿足:|a|3,|b|4,ab0,以a,b,ab
10、的模為邊長(zhǎng)構(gòu)成三角形,則它的邊與半徑為1的圓的公共點(diǎn)個(gè)數(shù)最多為_(kāi)__.,如圖所示.將內(nèi)切圓向上或向下平移可知該圓與該直角三角形最多有4個(gè)交點(diǎn).,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,6,,解析圓C:(x2)2y24的圓心為C(2,0),半徑等于2,圓M:(x25cos )2(y5sin )21, 圓心M(25cos ,5sin ),半徑等于1. |CM|521,兩圓相離. 如圖所示,設(shè)直線CM和圓M交于H,G兩點(diǎn),,|HC||CM|1514,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8
11、,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,4,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析因?yàn)橹本€2xy20與x軸、y軸的交點(diǎn)分別為A,B, 所以A(1,0),B(0,2), 又F1(c,0),D(0,b),,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,技能提升練,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,
12、3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,則SABDkSCBD,SAMDkSCMD,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,拓展沖刺練,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,,解析設(shè)向量a與b的夾角為,則ab|a||b|cos 2cos 1,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,所以ac1,bc12. 由0,得112, 所以minac,bc1,,所以當(dāng)0時(shí),minac,bc取得最大值,此時(shí)c(1,0),則|c|1.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,