《(新課標(biāo))廣西2019高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 考前增分指導(dǎo) 一 高考數(shù)學(xué)中最容易丟分的29個(gè)知識(shí)點(diǎn)課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))廣西2019高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 考前增分指導(dǎo) 一 高考數(shù)學(xué)中最容易丟分的29個(gè)知識(shí)點(diǎn)課件.ppt(17頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第三部分 考前增分指導(dǎo),一、高考數(shù)學(xué)中最容易丟分的29個(gè)知識(shí)點(diǎn),1.遺忘空集致誤 由于空集是任何非空集合的真子集,因此當(dāng)B=時(shí)也滿足BA.解含有參數(shù)的集合問題時(shí),要特別注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況. 2.忽視集合元素的“三性”致誤 集合中的元素具有確定性、無序性、互異性,集合元素的“三性”中互異性對(duì)解題的影響最大,特別是含有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求. 3.混淆命題的否定與否命題 命題的“否定”與命題的“否命題”是兩個(gè)不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對(duì)“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論.,4.充
2、分條件、必要條件顛倒致誤 對(duì)于兩個(gè)條件A,B,若AB成立,則A是B的充分條件,B是A的必要條件;若BA成立,則A是B的必要條件,B是A的充分條件;若AB,則A,B互為充分必要條件.解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問題時(shí)一定要根據(jù)充分條件和必要條件的概念作出準(zhǔn)確的判斷. 5.“或”“且”“非”理解不準(zhǔn)確致誤 命題pq真p真或q真,命題pq假p假且q假(概括為一真即真);命題pq真p真且q真,命題pq假p假或q假(概括為一假即假);非p真p假,非p假p真(概括為一真一假).求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補(bǔ)”對(duì)應(yīng)起來進(jìn)行理解,通過集合
3、的運(yùn)算求解.,6.函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤 在研究函數(shù)問題時(shí),要時(shí)時(shí)刻刻想到“函數(shù)的圖象”,學(xué)會(huì)從函數(shù)圖象上去分析問題、尋找解決問題的方法.對(duì)于函數(shù)的幾個(gè)不同的遞增(減)區(qū)間,切忌使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的遞增(減)區(qū)間即可. 7.判斷函數(shù)奇偶性忽略定義域致誤 判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,那么函數(shù)一定是非奇非偶函數(shù).,8.函數(shù)零點(diǎn)存在性定理使用不當(dāng)致誤 如果函數(shù)y=f(x)在區(qū)間a,b上的圖象是一條連續(xù)的曲線,并且有f(a)f(b)0時(shí),不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn).函數(shù)
4、的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”函數(shù)的零點(diǎn)存在性定理是“無能為力”的,在解決函數(shù)的零點(diǎn)問題時(shí)要注意這個(gè)問題. 9.復(fù)數(shù)的概念不清致誤 對(duì)于復(fù)數(shù)a+bi(a,bR),a叫做實(shí)部,b叫做虛部.當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a,bR)是實(shí)數(shù)a;當(dāng)b0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0,且b0時(shí),z=bi叫做純虛數(shù).解決復(fù)數(shù)概念類試題,要仔細(xì)區(qū)分以上概念差別,防止出錯(cuò).另外,i2=-1是實(shí)現(xiàn)實(shí)數(shù)與虛數(shù)互化的橋梁,要適時(shí)進(jìn)行轉(zhuǎn)化,解題時(shí)極易丟掉“-”而出錯(cuò).,10.忽視零向量致誤 零向量是向量中最特殊的向量,規(guī)定零向量的長(zhǎng)度為0,其方向是任意的,零向量與任意向量都共線.它在
5、向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視. 11.向量夾角范圍不清致誤 解題時(shí)要全面考慮問題.數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)ab<0時(shí),a與b的夾角不一定為鈍角,要注意=的情況.,12.an與Sn關(guān)系不清致誤 在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在下列關(guān)系:當(dāng)n=1時(shí),a1=S1;當(dāng)n2時(shí),an=Sn-Sn-1.這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一
6、個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn). 13.對(duì)數(shù)列的定義、性質(zhì)理解錯(cuò)誤 等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù).一般地,有結(jié)論“若數(shù)列an的前n項(xiàng)和Sn=an2+bn+c(a,b,cR),則數(shù)列an為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(mN*)是等差數(shù)列.,14.數(shù)列中的最值錯(cuò)誤 在數(shù)列問題中,其通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問題.數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意先把n=1和n2分開討論,再看能不能統(tǒng)一.在關(guān)于正整數(shù)n的二次函數(shù)
7、中,其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)圖象的對(duì)稱軸的遠(yuǎn)近而定. 15.錯(cuò)位相減求和處理不當(dāng)致誤 錯(cuò)位相減求和法的適用條件:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和,基本方法是設(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,就把問題轉(zhuǎn)化為以求一個(gè)等比數(shù)列的前n項(xiàng)和或前n-1項(xiàng)和為主的求和問題.這里最容易出現(xiàn)問題的就是錯(cuò)位相減后對(duì)剩余項(xiàng)的處理.,16.不等式性質(zhì)應(yīng)用不當(dāng)致誤 在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準(zhǔn)確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數(shù)(式)、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使
8、其能夠成立的條件,如果忽視了不等式性質(zhì)成立的前提條件就會(huì)出現(xiàn)錯(cuò)誤. 17.忽視基本不等式應(yīng)用條件致誤,18.不等式恒成立問題致誤 解決不等式恒成立問題的常規(guī)求法是:借助相應(yīng)函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結(jié)合法、變量分離法、主元法.通過最值產(chǎn)生結(jié)論.應(yīng)注意恒成立與存在性問題的區(qū)別,如對(duì)任意xa,b都有f(x)g(x)成立,即f(x)-g(x)0的恒成立問題,但對(duì)存在xa,b,使f(x)g(x)成立,則為存在性問題,即f(x)ming(x)max,應(yīng)特別注意兩函數(shù)的最大值與最小值的關(guān)系. 19.忽視三視圖中的實(shí)、虛線致誤 三視圖是根據(jù)正投影原理進(jìn)行繪制,嚴(yán)格按照“長(zhǎng)對(duì)正,高平齊,寬相等”的
9、規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實(shí)線畫出,不可見的輪廓線用虛線畫出,這一點(diǎn)很容易疏忽.,20.面積體積計(jì)算轉(zhuǎn)化不靈活致誤 面積、體積的計(jì)算既需要學(xué)生有扎實(shí)的基礎(chǔ)知識(shí),又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法:(1)還臺(tái)為錐的思想:這是處理臺(tái)體時(shí)常用的思想方法.(2)割補(bǔ)法:求不規(guī)則圖形面積或幾何體體積時(shí)常用.(3)等積變換法:充分利用三棱錐的任意一個(gè)面都可作為底面的特點(diǎn),靈活求解三棱錐的體積.(4)截面法:尤其是關(guān)于旋轉(zhuǎn)體及與旋轉(zhuǎn)體有關(guān)的組合問題,常畫出軸截面進(jìn)行分析求解. 21.隨意推廣平面幾
10、何中結(jié)論致誤 平面幾何中有些概念和性質(zhì),推廣到空間中不一定成立.例如“過直線外一點(diǎn)只能作一條直線與已知直線垂直”“垂直于同一條直線的兩條直線平行”等性質(zhì)在空間中就不成立.,22.對(duì)折疊與展開問題認(rèn)識(shí)不清致誤 折疊與展開是立體幾何中的常用思想方法,此類問題注意折疊或展開過程中平面圖形與空間圖形中的變量與不變量,不僅要注意哪些變了,哪些沒變,還要注意位置關(guān)系的變化. 23.點(diǎn)、線、面位置關(guān)系不清致誤 關(guān)于空間點(diǎn)、線、面位置關(guān)系的組合判斷類試題是高考全面考查考生對(duì)空間位置關(guān)系的判定和性質(zhì)掌握程度的理想題型,歷來受到命題者的青睞,解決這類問題的基本思路有兩個(gè):一是逐個(gè)尋找反例作出否定的判斷或逐個(gè)進(jìn)行邏
11、輯證明作出肯定的判斷;二是結(jié)合長(zhǎng)方體模型或?qū)嶋H空間位置(如課桌、教室)作出判斷,但要注意定理應(yīng)用準(zhǔn)確,考慮問題全面細(xì)致.,24.忽視斜率不存在致誤 在解決兩直線平行的相關(guān)問題時(shí),若利用l1l2k1=k2來求解,則要注意其前提條件是兩直線不重合且斜率存在.如果忽略k1,k2不存在的情況,就會(huì)導(dǎo)致錯(cuò)解.這類問題也可以利用如下的結(jié)論求解,即直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0平行的必要條件是A1B2-A2B1=0,在求出具體數(shù)值后代入檢驗(yàn),看看兩條直線是不是重合,從而確定問題的答案.對(duì)于解決兩直線垂直的相關(guān)問題時(shí)也有類似的情況.利用l1l2k1k2=-1時(shí),要注意其前提
12、條件是k1與k2必須同時(shí)存在.利用直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條件是A1A2+B1B2=0,就可以避免討論.,25.忽視零截距致誤 解決有關(guān)直線的截距問題時(shí)應(yīng)注意兩點(diǎn):一是求解時(shí)一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫成截距式.因此解決這類問題時(shí)要進(jìn)行分類討論,不要漏掉截距為零時(shí)的情況. 26.忽視圓錐曲線定義中條件致誤 利用橢圓、雙曲線的定義解題時(shí),要注意兩種曲線的定義形式及其限制條件.如在雙曲線的定義中,有兩點(diǎn)是缺一不可的:其一,絕對(duì)值;其二,2a<|F1F2|.如果不滿足第一個(gè)條件,動(dòng)點(diǎn)到兩定點(diǎn)的距離之差為常數(shù),而不
13、是差的絕對(duì)值為常數(shù),那么其軌跡只能是雙曲線的一支.,27.誤判直線與圓錐曲線的位置關(guān)系 過定點(diǎn)的直線與雙曲線的位置關(guān)系問題,基本的解決思路有兩個(gè):一是利用一元二次方程的判別式來確定,但一定要注意,利用判別式的前提是二次項(xiàng)系數(shù)不為零,當(dāng)二次項(xiàng)系數(shù)為零時(shí),直線與雙曲線的漸近線平行(或重合),也就是直線與雙曲線最多只有一個(gè)交點(diǎn);二是利用數(shù)形結(jié)合的思想,畫出圖形,根據(jù)圖形判斷直線和雙曲線的各種位置關(guān)系.在直線與圓錐曲線的位置關(guān)系中,拋物線和雙曲線都有特殊情況,在解題時(shí)要注意,不要忘記其特殊性. 28.循環(huán)結(jié)束判斷不準(zhǔn)致誤 控制循環(huán)結(jié)構(gòu)的是計(jì)數(shù)變量和累加變量的變化規(guī)律以及循環(huán)結(jié)束的條件.在解答這類題目時(shí),首先要弄清楚這兩個(gè)變量的變化規(guī)律,其次要看清楚循環(huán)結(jié)束的條件,這個(gè)條件由輸出要求所決定,看清楚是滿足條件時(shí)結(jié)束還是不滿足條件時(shí)結(jié)束.,29.條件結(jié)構(gòu)對(duì)條件判斷不準(zhǔn)致誤 條件結(jié)構(gòu)的程序框圖中對(duì)判斷條件的分類是逐級(jí)進(jìn)行的,其中沒有遺漏也沒有重復(fù),在解題時(shí)對(duì)判斷條件要仔細(xì)辨別,看清楚條件和函數(shù)的對(duì)應(yīng)關(guān)系,對(duì)條件中的數(shù)值不要漏掉也不要重復(fù)了端點(diǎn)值.,