《2020版高中數(shù)學(xué) 第二章 數(shù)列 2.2.2 等差數(shù)列的前n項和(第2課時)等差數(shù)列前n項和的性質(zhì)課件 新人教B版必修5.ppt》由會員分享,可在線閱讀,更多相關(guān)《2020版高中數(shù)學(xué) 第二章 數(shù)列 2.2.2 等差數(shù)列的前n項和(第2課時)等差數(shù)列前n項和的性質(zhì)課件 新人教B版必修5.ppt(39頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第2課時等差數(shù)列前n項和的性質(zhì),第二章 2.2.2等差數(shù)列的前n項和,,,學(xué)習(xí)目標(biāo),XUEXIMUBIAO,1.會利用等差數(shù)列性質(zhì)簡化求和運算. 2.會利用等差數(shù)列前n項和的函數(shù)特征求最值.,,NEIRONGSUOYIN,內(nèi)容索引,自主學(xué)習(xí),題型探究,達(dá)標(biāo)檢測,1,自主學(xué)習(xí),PART ONE,知識點一等差數(shù)列an的前n項和Sn的性質(zhì),思考若an是公差為d的等差數(shù)列,那么a1a2a3,a4a5a6,a7a8a9是否也是等差數(shù)列?如果是,公差是多少?,答案(a4a5a6)(a1a2a3)(a4a1)(a5a2)(a6a3) 3d3d3d9d, (a7a8a9)(a4a5a6)(a7a4)(a8a5
2、)(a9a6)3d3d3d9d. a1a2a3,a4a5a6,a7a8a9是公差為9d的等差數(shù)列.,知識點二等差數(shù)列an的前n項和公式的函數(shù)特征,二次,最大,2.等差數(shù)列前n項和的最值 (1)在等差數(shù)列an中,,最大,最小,最小,1.等差數(shù)列的前n項和一定是常數(shù)項為0的關(guān)于n的二次函數(shù).() 2.等差數(shù)列an的前n項和SnAn2bn.即an的公差為2A.(),,思考辨析 判斷正誤,SIKAOBIANXIPANDUANZHENGWU,4.數(shù)列an的前n項和Snn21,則an不是等差數(shù)列.(),,,,,2,題型探究,PART TWO,即S3m3(S2mSm)3(10030)210.,,題型一等差數(shù)
3、列前n項和的性質(zhì)的應(yīng)用,例1(1)等差數(shù)列an的前m項和為30,前2m項和為100,求數(shù)列an的前3m項的和S3m;,解方法一在等差數(shù)列中, Sm,S2mSm,S3mS2m成等差數(shù)列, 30,70,S3m100成等差數(shù)列. 27030(S3m100),S3m210.,反思感悟等差數(shù)列前n項和Sn的有關(guān)性質(zhì)在解題過程中,如果運用得當(dāng)可以達(dá)到化繁為簡、化難為易、事半功倍的效果.,跟蹤訓(xùn)練1一個等差數(shù)列的前10項和為100,前100項和為10,求前110項之和.,解設(shè)Snan2bn. S10100,S10010,,,題型二求等差數(shù)列前n項和的最值問題,例2在等差數(shù)列an中,若a125,且S9S17,
4、求Sn的最大值.,解方法一S9S17,a125,,解得d2.,(n13)2169. 當(dāng)n13時,Sn有最大值169. 方法二同方法一,求出公差d2. an25(n1)(2)2n27. a1250,,又nN,當(dāng)n13時,Sn有最大值169. 方法三同方法一,求出公差d2.S9S17, a10a11a170. 由等差數(shù)列的性質(zhì)得a13a140.a130,a14<0. 當(dāng)n13時,Sn有最大值169.,方法四同方法一,求出公差d2.設(shè)SnAn2Bn. S9S17,,二次函數(shù)f(x)Ax2Bx的對稱軸為x 13,且開口方向向下,,當(dāng)n13時,Sn取得最大值169.,反思感悟(1)等差數(shù)列前n項和S
5、n最大(小)值的情形: 若a10,d0,則Sn存在最小值,即所有非正項之和. (2)求等差數(shù)列前n項和Sn最值的方法 尋找正、負(fù)項的分界點,可利用等差數(shù)列性質(zhì)或利用,運用二次函數(shù)求最值.,跟蹤訓(xùn)練2已知等差數(shù)列an中,a19,a4a70. (1)求數(shù)列an的通項公式;,解由a19,a4a70, 得a13da16d0,解得d2, ana1(n1)d112n(nN).,(2)當(dāng)n為何值時,數(shù)列an的前n項和取得最大值?,解方法一由(1)知,a19,d2,,當(dāng)n5時,Sn取得最大值. 方法二由(1)知,a19,d2<0,an是遞減數(shù)列.,nN,n5時,an0,n6時,an<0. 當(dāng)n5時,Sn取得最
6、大值.,,題型三求數(shù)列|an|的前n項和,例3若等差數(shù)列an的首項a113,d4,記Tn|a1||a2||an|,求Tn.,解a113,d4,an174n. 當(dāng)n4時,Tn|a1||a2||an|a1a2an,當(dāng)n5時,Tn|a1||a2||an| (a1a2a3a4)(a5a6an) S4(SnS4)2S4Sn,反思感悟等差數(shù)列的各項取絕對值后組成數(shù)列|an|.若原等差數(shù)列an中既有正項,也有負(fù)項,那么|an|不再是等差數(shù)列,求和關(guān)鍵是找到數(shù)列an的正負(fù)項分界點處的n值,再分段求和.,跟蹤訓(xùn)練3已知等差數(shù)列an中,Sn為數(shù)列an的前n項和,若S216,S424,求數(shù)列|an|的前n項和Tn.
7、,解設(shè)等差數(shù)列an的首項為a1,公差為d,,所以等差數(shù)列an的通項公式為an112n(nN).,當(dāng)n5時,Tn|a1||a2||an|a1a2anSnn210n. 當(dāng)n6時,Tn|a1||a2||an| a1a2a5a6a7an2S5Sn 2(52105)(n210n) n210n50,,,核心素養(yǎng)之直觀想象,HEXINSUYANGZHIZHIGUANXIANGXIANG,用數(shù)形結(jié)合思想求解數(shù)列中的參數(shù)問題,典例在等差數(shù)列an中,a17,公差為d,前n項和為Sn,當(dāng)且僅當(dāng)n8時 Sn取得最大值,則d的取值范圍為____________.,解析方法一由當(dāng)且僅當(dāng)n8時Sn最大,知a80且a90,,
8、3,達(dá)標(biāo)檢測,PART THREE,,1,2,3,4,5,1.設(shè)Sn是等差數(shù)列an的前n項和,已知a23,a611,則S7等于 A.13 B.35 C.49 D.63,,,1,2,3,4,5,2.若等差數(shù)列an的前5項和S525,且a23,則a7等于 A.12 B.13 C.14 D.15,,解析S55a325,a35,da3a2532, a7a25d31013.故選B.,,1,2,3,4,5,3.設(shè)等差數(shù)列an的前n項和為Sn,若S39,S636,則a7a8a9等于 A.63 B.45 C.36 D.27,,解析a7a8a9S9S6, 而由等差數(shù)列的性質(zhì)可知,S3,S6S3,S9S6構(gòu)成等差
9、數(shù)列, 所以S3(S9S6)2(S6S3), 即a7a8a9S9S62S63S32363945.,,1,2,3,4,5,4.已知等差數(shù)列an的前n項和為Sn,7a55a90,且a9a5,則Sn取得最小值時n的值為 A.5 B.6 C.7 D.8,,解析由7a55a90,即7a128d5a140d0,,又a9a5,所以d0,a1<0.,取最接近的整數(shù)6,故Sn取得最小值時n的值為6.,,1,2,3,4,5,5.若等差數(shù)列an的前n項和為Sn2n23n,pq5,則apaq________.,20,apaq(pq)d5420.,,課堂小結(jié),KETANGXIAOJIE,1.等差數(shù)列an的前n項和Sn,有下面幾種常見變形,3.求等差數(shù)列an前n項的絕對值之和,關(guān)鍵是找到數(shù)列an的正負(fù)項的分界點.,2.求等差數(shù)列前n項和最值的方法 (1)二次函數(shù)法:用求二次函數(shù)的最值方法來求其前n項和的最值,但要注意nN,結(jié)合二次函數(shù)圖象的對稱性來確定n的值,更加直觀.,