《(福建專用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 解析幾何 9.4 直線與圓、圓與圓的位置關(guān)系課件 理 新人教A版.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(福建專用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 解析幾何 9.4 直線與圓、圓與圓的位置關(guān)系課件 理 新人教A版.ppt(25頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、9.4直線與圓、圓與圓的位置關(guān)系,知識(shí)梳理,考點(diǎn)自測,1.直線與圓的位置關(guān)系 設(shè)直線l:Ax+By+C=0(A2+B20), 圓:(x-a)2+(y-b)2=r2(r0), d為圓心(a,b)到直線l的距離,聯(lián)立直線和圓的方程,消元后得到的一元二次方程的判別式為.,<,,=,=,,<,知識(shí)梳理,考點(diǎn)自測,dr1+r2,無解,d=r1+r2,|r1-r2|
2、個(gè)圓的方程組成的方程組無解,則這兩個(gè)圓的位置關(guān)系為外切.() (3)“k=1”是“直線x-y+k=0與圓x2+y2=1相交”的必要不充分條件.() (4)過圓O:x2+y2=r2外一點(diǎn)P(x0,y0)作圓的兩條切線,切點(diǎn)為A,B,則O,P,A,B四點(diǎn)共圓且直線AB的方程是x0 x+y0y=r2.() (5)聯(lián)立兩相交圓的方程,并消掉二次項(xiàng)后得到的二元一次方程是兩圓的公共弦所在的直線方程.(),答案,知識(shí)梳理,考點(diǎn)自測,2,3,4,1,5,2.“a=1”是“直線l:y=kx+a和圓C:x2+y2=2相交”的() A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件,答案
3、,解析,知識(shí)梳理,考點(diǎn)自測,2,3,4,1,5,3.(2017寧夏石嘴山第三中學(xué)模擬)已知直線y=mx與圓x2+y2-4x+2=0相切,則m的值為(),答案,解析,知識(shí)梳理,考點(diǎn)自測,2,3,4,1,5,4.(2017遼寧大連一模)直線4x-3y=0與圓(x-1)2+(y-3)2=10相交所得弦長為(),答案,解析,知識(shí)梳理,考點(diǎn)自測,2,3,4,1,5,5.(2017山東棗莊一模)圓(x-2)2+(y+1)2=4與圓(x-3)2+(y-2)2=4的位置關(guān)系是.,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,例1(1)已知點(diǎn)M(a,b)在圓O:x2+y2=1外,則直線ax+by=1與圓O的位置關(guān)系是()
4、 A.相切B.相交C.相離D.不確定 (2)(2017北京東城一模)如果過原點(diǎn)的直線l與圓x2+(y-4)2=4切于第二象限,那么直線l的方程是() C.y=2xD.y=-2x,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,思考在直線與圓的位置關(guān)系中,求參數(shù)的取值范圍的常用方法有哪些? 解題心得1.判斷直線與圓的位置關(guān)系時(shí),若兩方程已知或圓心到直線的距離易表達(dá),則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達(dá)較煩瑣,則用代數(shù)法. 2.已知直線與圓的位置關(guān)系求參數(shù)的取值范圍時(shí),可根據(jù)數(shù)形結(jié)合思想利用直線與圓的位置關(guān)系的判斷條件建立不等式(組)解決.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,對點(diǎn)訓(xùn)練1(1)(2017
5、廣東佛山一模)對任意aR,曲線y=ex(x2+ax+1-2a)在點(diǎn)P(0,1-2a)處的切線l與圓C:(x-1)2+y2=16的位置關(guān)系是() A.相交B.相切 C.相離D.以上均有可能 (2)若過點(diǎn)A(4,0)的直線l與圓C:(x-2)2+y2=1有公共點(diǎn),則直線l的斜率的最小值為.,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,例2已知點(diǎn)M(3,1),直線ax-y+4=0及圓(x-1)2+(y-2)2=4. (1)求過點(diǎn)M的圓的切線方程; (2)若直線ax-y+4=0與圓相切,求a的值; (3)若直線ax-y+4=0與圓相交于A,B兩點(diǎn),且弦AB的長為2 ,求a的值.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,解:
6、 (1)圓心C(1,2),半徑r=2, 當(dāng)直線的斜率不存在時(shí),方程為x=3. 由圓心C(1,2)到直線x=3的距離d=3-1=2=r知,此時(shí),直線與圓相切. 當(dāng)直線的斜率存在時(shí),設(shè)方程為y-1=k(x-3),即kx-y+1-3k=0. 即3x-4y-5=0. 故過點(diǎn)M的圓的切線方程為x=3或3x-4y-5=0.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,思考如何運(yùn)用圓的幾何性質(zhì)求解圓的切線與弦長問題? 解題心得1.求過某點(diǎn)的圓的切線問題時(shí),應(yīng)首先確定點(diǎn)與圓的位置關(guān)系,然后求切線方程.若點(diǎn)在圓上(即為切點(diǎn)),則過該點(diǎn)的切線只有一條;若點(diǎn)在圓外,則過該點(diǎn)的切線有兩條,此時(shí)應(yīng)注意斜率不存在的
7、切線. 2.求直線被圓所截得的弦長時(shí),通??紤]由弦心距、弦長的一半、半徑所構(gòu)成的直角三角形,利用勾股定理來解決問題.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,對點(diǎn)訓(xùn)練2(1)(2017安徽馬鞍山一模)過點(diǎn)(3,6)的直線被圓x2+y2=25截得的弦長為8,這條直線的方程是 () A.3x-4y+15=0B.3x+4y-33=0 C.3x-4y+15=0或x=3D.3x+4y-33=0或x=3 (2)已知直線l:mx+y+3m- =0與圓x2+y2=12交于A,B兩點(diǎn),過點(diǎn)A,B分別作直線l的垂線與x軸交于C,D兩點(diǎn).若|AB|=2 ,則|CD|=.,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,例3已知圓C1:(x
8、-a)2+(y+2)2=4與圓C2:(x+b)2+(y+2)2=1外切,則ab的最大值為(),答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,思考在兩圓的位置關(guān)系中,圓心距與兩圓半徑的關(guān)系如何? 解題心得1.判斷兩圓的位置關(guān)系,通常是用幾何法,從圓心距d與兩圓半徑的和、差的關(guān)系入手.如果用代數(shù)法,那么從交點(diǎn)個(gè)數(shù)也就是方程組解的個(gè)數(shù)來判斷,但有時(shí)不能得到準(zhǔn)確結(jié)論. 2.兩圓位置關(guān)系中的含參問題有時(shí)需要將問題進(jìn)行化歸,要注重?cái)?shù)形結(jié)合思想的應(yīng)用.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,對點(diǎn)訓(xùn)練3(1)若把例3條件中的“外切”改為“內(nèi)切”,則ab的最大值為. (2)若把例3條件中的“外切”改為“相交”,則公共弦所在的直線方程為
9、. (3)若把例3條件中的“外切”改為“有四條公切線”,則直線x+y-1=0與圓(x-a)2+(y-b)2=1的位置關(guān)系是.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,(2)由題意得,把圓C1,圓C2的方程都化為一般方程. 圓C1:x2+y2-2ax+4y+a2=0, 圓C2:x2+y2+2bx+4y+b2+3=0, 由-得(2a+2b)x+3+b2-a2=0, 即(2a+2b)x+3+b2-a2=0為公共弦所在直線方程.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,(3)由兩圓存在四條切線,故兩圓外離, 故(a+b)29, 即a+b3或a+b<-3. 直線x+y-1=0與圓(x-a)2+(y-b)2=1相離.,考點(diǎn)1,考點(diǎn)2,考
10、點(diǎn)3,1.直線與圓、圓與圓的位置關(guān)系問題,考慮到圓的幾何性質(zhì),一般用幾何法解決. 2.直線與圓、圓與圓的交點(diǎn)問題,要聯(lián)立直線與圓的方程,或聯(lián)立圓與圓的方程來解決. 3.圓的切線問題: (1)過圓上一點(diǎn)的切線方程的求法是先求切點(diǎn)與圓心連線的斜率,再根據(jù)垂直關(guān)系求得切線斜率,最后通過直線方程的點(diǎn)斜式求得切線方程; (2)過圓外一點(diǎn)的切線方程的求法,一般是先設(shè)出所求切線方程的點(diǎn)斜式,再利用圓心到切線的距離等于半徑列出等式求出所含的參數(shù)即可.若只求出一條切線方程,則斜率不存在的直線也是切線. 4.圓的弦長問題首選幾何法,即利用圓的半徑、弦心距、弦長的一半滿足勾股定理;弦長問題若涉及直線與圓的交點(diǎn)、直線的斜率,則選用代數(shù)法.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,1.過圓外一定點(diǎn)作圓的切線,有兩條,若在某種條件下只求出一個(gè)結(jié)果,則斜率不存在的直線也是切線. 2.本節(jié)問題的解決多注意數(shù)形結(jié)合,圓與其他知識(shí)的交匯問題多注意問題的轉(zhuǎn)化. 3.若圓與圓相交,則可以利用兩個(gè)圓的方程作差的方法求得公共弦所在直線的方程.,