《五年級數(shù)學教案-《公倍數(shù)和公因數(shù)》教材分析》由會員分享,可在線閱讀,更多相關《五年級數(shù)學教案-《公倍數(shù)和公因數(shù)》教材分析(7頁珍藏版)》請在裝配圖網上搜索。
1、
五年級數(shù)學教案——《公倍數(shù)和公因數(shù)》教材分析
在四年級(下冊)教材里,學生已經建立了倍數(shù)和因數(shù)的概念,會找10以內自然數(shù)的倍數(shù),100以內自然數(shù)的因數(shù)。本單元繼續(xù)教學倍數(shù)和因數(shù)的知識,要理解公倍數(shù)、最小公倍數(shù)和公因數(shù)、最大公因數(shù)的意義,學會找兩個數(shù)的最小公倍數(shù)和最大公因數(shù)的方法。為以后進行通分、約分和分數(shù)四則計算作準備。全單元的教學內容分三部分編排。
第22~25頁教學公倍數(shù)。主要是兩個數(shù)的公倍數(shù)、最小公倍數(shù)的意義,求最小公倍數(shù)的方法。
第26~31頁教學公因數(shù)。包括兩個數(shù)的公因數(shù)、最大公因數(shù)的意義,求最大公因數(shù)的方法。在練習五里還安排了最小公倍數(shù)與最大公因數(shù)的比較。
第32~
2、36頁實踐與綜合應用。利用郵政編碼、身份證號碼等實例,教學用數(shù)字編碼表示信息。
在你知道嗎里,介紹了我國古代曾經用輾轉相除法求最大公因數(shù),也介紹了現(xiàn)代人們經常用短除法求兩個數(shù)的最大公因數(shù)和最小公倍數(shù)。在閱讀這篇材料后,如果學生愿意用短除法求兩個數(shù)的最大公因數(shù)或最小公倍數(shù),是允許的。但是,不要求全體學生掌握和使用短除法。編排的一道思考題,是可以用公因數(shù)知識解決的實際問題。
1在現(xiàn)實的情境中教學概念,讓學生通過操作領會公倍數(shù)、公因數(shù)的含義。
例1教學公倍數(shù)和最小公倍數(shù),例3教學公因數(shù)和最大公因數(shù),都是形成新的數(shù)學概念,都讓學生在操作活動中領會概念的含義。
例1先用長3厘米、寬2厘米的長方形
3、紙片,分別鋪邊長6厘米和8厘米的正方形,發(fā)現(xiàn)正好鋪滿邊長6厘米的正方形,不能正好鋪滿邊長8厘米的正方形,并從長方形紙片的長、寬和正方形邊長的關系,對鋪滿和不能鋪滿的原因作出解釋。再想像這張長方形紙片還能正好鋪滿哪些正方形,從倍數(shù)的角度總結規(guī)律,為形成新的數(shù)學概念積累豐富的感性材料。然后揭示公倍數(shù)與最小公倍數(shù)的含義,把感性認識提升成理性認識。
教材選擇長方形紙片鋪正方形的活動教學公倍數(shù),是因為這一活動能吸引學生發(fā)現(xiàn)和提出問題,能引導學生思考。學生用同一張長方形紙片鋪兩個不同的正方形,面對出現(xiàn)的兩種結果,會提出為什么有時正好鋪滿、有時不能,什么時候正好鋪滿、什么時候不能這些有研究價值的問題。他們
4、沿著正方形的邊鋪長方形紙片,就會想到正好鋪滿與不能正好鋪滿的原因可能和邊長有關,于是產生進一步研究正方形邊長和長方形長、寬之間關系的愿望。
分析正方形的邊長和長方形長、寬之間的關系,按學生的認知規(guī)律,設計成兩個層次:第一個層次聯(lián)系鋪的過程與結果,從兩個正方形的邊長除以長方形的長、寬沒有余數(shù)和有余數(shù)的層面上,體會正好鋪滿與不能正好鋪滿的原因。第二個層次根據(jù)正好鋪滿邊長6厘米的正方形、不能正好鋪滿邊長8厘米的正方形的經驗,聯(lián)想還能正好鋪滿邊長是幾厘米的正方形。先找到這些正方形,把它們的邊長從小到大排列,知道這樣的正方形有無數(shù)多個。再用既是2的倍數(shù),又是3的倍數(shù)概括地描述這些正方形邊長的特征。顯然
5、,前一層次形象思維的成分較大,思考難度較小,對后一層次的抽象認識有重要的支持作用。
讓學生在現(xiàn)實情境中,通過活動領悟公倍數(shù)的含義,不僅體現(xiàn)在例題的教學中,還落實到練習里。第23頁練一練在2的倍數(shù)上畫,在5的倍數(shù)上畫○。從數(shù)表里的10、20、30三個數(shù)既畫了又畫了○,體會它們既是2的倍數(shù),又是5的倍數(shù),是2和5的公倍數(shù)。練習四第4、7、8題都是與公倍數(shù)有關的實際問題,讓學生通過涂顏色、填表格、圈日期等活動體會公倍數(shù)的含義。
例3教學公因數(shù)、最大公因數(shù)的含義,也通過鋪的活動組織教學。與例1不同的是,例3用2張邊長不同的正方形紙片分別去鋪同一個長方形,是形成公因數(shù)概念的需要。例題編寫和練習編排與
6、教學公倍數(shù)相似,這里不再重復。
2突出概念的內涵、外延,讓學生準確理解概念。
概念的內涵是指這個概念所反映的一切對象的共同的本質屬性。公倍數(shù)是幾個數(shù)公有的倍數(shù),公因數(shù)是幾個數(shù)公有的因數(shù),可見幾個數(shù)公有的是公倍數(shù)和公因數(shù)這兩個概念的本質屬性。在倍數(shù)、因數(shù)的基礎上教學公倍數(shù)、公因數(shù),關鍵在于突出公有的含義。
教材用既是......又是......的描述,讓學生理解公有的意思。例1先聯(lián)系長3厘米、寬2厘米的長方形紙片正好鋪滿邊長6厘米、12厘米、24厘米......的正方形這些現(xiàn)象,從正方形的邊長分別除以長方形紙的長和寬都沒有余數(shù),得出正方形的邊長既是2的倍數(shù),又是3的倍數(shù),一方面概括了這些正
7、方形邊長的特點,另一方面讓學生體會既是......又是......的意思。然后在6、12、18、24......既是2的倍數(shù),又是3的倍數(shù),它們是2和3的公倍數(shù)這句話里把既是......又是......進一步概括為公倍數(shù),形成公倍數(shù)的概念。
集合圖能直觀形象地顯示公倍數(shù)、公因數(shù)的含義。第23頁把6的倍數(shù)與9的倍數(shù)分別寫到兩個集合圈里,這兩個集合圈有一部分重疊,在重疊部分里寫的數(shù)既是6的倍數(shù),也是9的倍數(shù),是6和9的公倍數(shù)。先觀察這個集合圖,再填寫第24頁的集合圖,學生能進一步體會公倍數(shù)的含義。
概念的外延是指這個概念包括的一切對象。對具體事例是否屬于概念作出判斷,就是識別概念的外延,加強對
8、概念的認識。例1在揭示2和3的公倍數(shù)的概念,指出它們的公倍數(shù)是6、12、18、24......后,提出8是2和3的公倍數(shù)嗎這個問題,利用反例凸現(xiàn)公倍數(shù)的含義。讓學生明白8只是2的倍數(shù),不是3的倍數(shù),從而進一步明確公倍數(shù)的概念。練習四第4題先在表格里分別寫出4、5、6的倍數(shù),再尋找4和5、5和6、4和6的公倍數(shù),也有助于學生識別概念的外延。
3運用數(shù)學概念,讓學生探索找兩個數(shù)的最小公倍數(shù)、最大公因數(shù)的方法。
本單元只教學兩個數(shù)的公倍數(shù)、最小公倍數(shù)和兩個數(shù)的公因數(shù)、最大公因數(shù)。因為這些是最基礎的數(shù)學知識,在約分和通分時應用最多。只要這些基礎知識扎實,即使遇到三個分數(shù)的通分,學生也能靈活處理。不
9、編排例題教學短除法求最小公倍數(shù)和最大公因數(shù),而是采用寫出兩個數(shù)的倍數(shù)或因數(shù),找出它們的最小公倍數(shù)或最大公因數(shù)的方法。這樣安排的目的是,在運用概念解決問題的過程中,進一步加強數(shù)學概念的教學。
例2教學求兩個數(shù)的最小公倍數(shù),出現(xiàn)了多種解決問題的方法,這些方法的思路都出自公倍數(shù)和最小公倍數(shù)的概念,從6和9的公倍數(shù)、最小公倍數(shù)的意義引發(fā)出來。學生可能先分別寫出6和9的倍數(shù),再找出它們的公倍數(shù)和最小公倍數(shù)。由于倍數(shù)需一個一個地寫,還要逐個逐個地比,所以得出公倍數(shù)和最小公倍數(shù)比較慢。學生也可能在9的倍數(shù)里找6的倍數(shù),只要依次想出9的倍數(shù)(即9times;1、9times;2、9times;3......
10、的積),逐一判斷是不是6的倍數(shù),操作比較方便。尤其求兩個較小數(shù)(不超過10)的最小公倍數(shù)時,更能顯出這種方法的優(yōu)點。當然,在6的倍數(shù)里找9的倍數(shù),也是一種方法,但沒有9的倍數(shù)里找6的倍數(shù)快捷。教材安排學生在交流中體會各種方法,首先是理解各種方法的共同點,都在尋找既是6的倍數(shù)、又是9的倍數(shù),而且是盡量小的那個數(shù)。然后是理解各種方法的個性特點,從中作出自己的選擇。
例4求兩個數(shù)的最大公因數(shù),教學方法和例2相似。求8和12的最大公因數(shù)的幾種方法中,教材呈現(xiàn)的第一種方法比較適宜多數(shù)學生。因為一個數(shù)的因數(shù)的個數(shù)是有限的,先寫出兩個數(shù)的全部因數(shù),再找出最大公因數(shù),操作不麻煩。第二種方法從小到大依次想較小
11、數(shù)的因數(shù),稍不留心就會遺漏某一個因數(shù)。練習五編排第3題的意圖就在于此。
練習四第5題在初步學會求兩個數(shù)的最小公倍數(shù)之后安排,兩個色塊分別呈現(xiàn)最小公倍數(shù)的兩種特殊情況。左邊的色塊里,每組的兩個數(shù)之間有倍數(shù)與因數(shù)關系,它們的最小公倍數(shù)是較大的那個數(shù)。右邊的色塊里,每組兩個數(shù)的最小公倍數(shù)是它們的乘積。練習五第6題是初步會求兩個數(shù)的最大公因數(shù)后安排的。左邊色塊里,每組的兩個數(shù)之間也有倍數(shù)與因數(shù)的關系,它們的最大公因數(shù)是較小的那個數(shù)。右邊色塊里,每組兩個數(shù)的最大公因數(shù)是1。這些特殊情況,在通分和約分時會經常出現(xiàn)。教學時可以按色塊進行,先分別求出同一色塊四組數(shù)的最小公倍數(shù)或最大公因數(shù),再找出相同的特點,通過交流內化成求最小公倍數(shù)和最大公因數(shù)的技能。要注意的是,學生有倍數(shù)與因數(shù)的知識,能夠理解同組兩個數(shù)之間的倍數(shù)、因數(shù)關系,以及它們的最小公倍數(shù)和最大公因數(shù)的規(guī)律。由于新教材不講互質數(shù),也不教短除法,所以兩個互質數(shù)的最小公倍數(shù)是它們的乘積、最大公因數(shù)是1,這些特殊情況,只能在具體對象中感受,不宜深入研究原因,更不要出結語讓學生記憶。第9題分別寫出1、2、3、4......20這些數(shù)與3、2、4、5的最大公因數(shù),在發(fā)現(xiàn)有趣規(guī)律的同時,也在感受兩個數(shù)的最大公因數(shù)的兩種特殊情況。
7