【步步高】2014屆高三數(shù)學(xué)一輪 3.3 導(dǎo)數(shù)的應(yīng)用(二)課時(shí)檢測(cè) 理 (含解析)北師大版

上傳人:沈*** 文檔編號(hào):154888877 上傳時(shí)間:2022-09-22 格式:DOC 頁(yè)數(shù):7 大?。?24KB
收藏 版權(quán)申訴 舉報(bào) 下載
【步步高】2014屆高三數(shù)學(xué)一輪 3.3 導(dǎo)數(shù)的應(yīng)用(二)課時(shí)檢測(cè) 理 (含解析)北師大版_第1頁(yè)
第1頁(yè) / 共7頁(yè)
【步步高】2014屆高三數(shù)學(xué)一輪 3.3 導(dǎo)數(shù)的應(yīng)用(二)課時(shí)檢測(cè) 理 (含解析)北師大版_第2頁(yè)
第2頁(yè) / 共7頁(yè)
【步步高】2014屆高三數(shù)學(xué)一輪 3.3 導(dǎo)數(shù)的應(yīng)用(二)課時(shí)檢測(cè) 理 (含解析)北師大版_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《【步步高】2014屆高三數(shù)學(xué)一輪 3.3 導(dǎo)數(shù)的應(yīng)用(二)課時(shí)檢測(cè) 理 (含解析)北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《【步步高】2014屆高三數(shù)學(xué)一輪 3.3 導(dǎo)數(shù)的應(yīng)用(二)課時(shí)檢測(cè) 理 (含解析)北師大版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 3.3 導(dǎo)數(shù)的應(yīng)用(二) 一、選擇題 1.函數(shù)f(x)的定義域?yàn)殚_區(qū)間(a,b),導(dǎo)函數(shù)f′(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在開區(qū)間(a,b)內(nèi)有極小值點(diǎn)(  ). A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 答案 A 2.若函數(shù)y=f(x)可導(dǎo),則“f′(x)=0有實(shí)根”是“f(x)有極值”的 (  ). A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件 答案 A 3.已知函數(shù)f(x)=x3+ax2+(a+6)x+1有極大值和極小值,則實(shí)數(shù)a的取值范圍是( 

2、 ). A.(-1,2) B.(-∞,-3)∪(6,+∞) C.(-3,6) D.(-∞,-1)∪(2,+∞) 解析 f′(x)=3x2+2ax+(a+6),因?yàn)楹瘮?shù)有極大值和極小值, 所以f′(x)=0有兩個(gè)不相等的實(shí)數(shù)根,所以Δ=4a2-4×3(a+6)>0, 解得a<-3或a>6. 答案 B 4.已知函數(shù)f(x)=-x3+ax2-4在x=2處取得極值,若m、n∈[-1,1],則f(m)+f′(n)的最小值是(  ) A.-13 B.-15 C.10

3、 D.15 解析:求導(dǎo)得f′(x)=-3x2+2ax,由函數(shù)f(x)在x=2處取得極值知f′(2)=0,即-3×4+2a×2=0,∴a=3.由此可得f(x)=-x3+3x2-4, f′(x)=-3x2+6x,易知f(x)在(-1,0)上單調(diào)遞減,在(0,1)上單調(diào)遞增, ∴當(dāng)m∈[-1,1]時(shí),f(m)min=f(0)=-4.又f′(x)=-3x2+6x的圖象開口向下,且對(duì)稱軸為x=1,∴當(dāng)n∈[-1,1]時(shí),f′(n)min=f′(-1)=-9.故f(m)+f′(n)的最小值為-13. 答案:A 5.函數(shù)y=xe-x,x∈[0,4]的最小值為

4、(  ). A.0 B. C. D. 解析 y′=e-x-xe-x=-e-x(x-1) y′與y隨x變化情況如下: x 0 (0,1) 1 (1,4) 4 y′ + 0 - y 0 當(dāng)x=0時(shí),函數(shù)y=xe-x取到最小值0. 答案 A 6.設(shè)a∈R,函數(shù)f(x)=ex+a·e-x的導(dǎo)函數(shù)是f′(x),且f′(x)是奇函數(shù).若曲線y=f(x)的一條切線的斜率是,則切點(diǎn)的橫坐標(biāo)為(  ) A.ln2

5、 B.-ln2 C. D. 解析 f′(x)=ex-ae-x,這個(gè)函數(shù)是奇函數(shù),因?yàn)楹瘮?shù)f(x)在0處有定義,所以f′(0)=0,故只能是a=1.此時(shí)f′(x)=ex-e-x,設(shè)切點(diǎn)的橫坐標(biāo)是x0,則ex0-e-x0=,即2(ex0)2-3ex0-2=0,即(ex0-2)(2ex0+1)=0,只能是ex0=2,解得x0=ln2.正確選項(xiàng)為A. 答案 A 7.設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R).若x=-1為函數(shù)f(x)ex的一個(gè)極值點(diǎn),則下列圖象不可能為y=f(x)的圖象是(

6、  ). 解析 若x=-1為函數(shù)f(x)ex的一個(gè)極值點(diǎn),則易得a=c.因選項(xiàng)A、B的函數(shù)為f(x)=a(x+1)2,則[f(x)ex]′=f′(x)ex+f(x)(ex)′=a(x+1)(x+3)ex,∴x=-1為函數(shù)f(x)ex的一個(gè)極值點(diǎn),滿足條件;選項(xiàng)C中,對(duì)稱軸x=->0,且開口向下,∴a<0,b>0,∴f(-1)=2a-b<0,也滿足條件;選項(xiàng)D中,對(duì)稱軸x=-<-1,且開口向上,∴a>0,b>2a,∴f(-1)=2a-b<0,與圖矛盾,故答案選D. 答案 D 二、填空題 8.已知f(x)=2x3-6x2+3,對(duì)任意的x∈[-2,2]都有f(x)≤a,則a的取值范圍為_

7、_______. 解析:由f′(x)=6x2-12x=0,得x=0,或x=2. 又f(-2)=-37,f(0)=3,f(2)=-5, ∴f(x)max=3,又f(x)≤a,∴a≥3. 答案:[3,+∞) 9.函數(shù)f(x)=x2-2ln x的最小值為________. 解析 由f′(x)=2x-=0,得x2=1.又x>0,所以x=1.因?yàn)?<x<1時(shí),f′(x)<0,x>1時(shí)f′(x)>0,所以當(dāng)x=1時(shí),f(x)取極小值(極小值唯一)也即最小值f(1)=1. 答案 1 10.若f(x)=x3+3ax2+3(a+2)x+1有極大值和極小值,則a的取值范圍________. 解析

8、 f′(x)=3x2+6ax+3(a+2), 由已知條件Δ>0,即36a2-36(a+2)>0, 解得a<-1,或a>2. 答案 (-∞,-1)∪(2,+∞) 11.設(shè)函數(shù)f(x)=ax3-3x+1(x∈R),若對(duì)于任意x∈[-1,1],都有f(x)≥0成立,則實(shí)數(shù)a的值為________. 解析 (構(gòu)造法)若x=0,則不論a取何值,f(x)≥0顯然成立; 當(dāng)x>0,即x∈(0,1]時(shí),f(x)=ax3-3x+1≥0可化為a≥-.設(shè)g(x)=-,則g′(x)=, 所以g(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減, 因此g(x)max=g=4,從而a≥4. 當(dāng)x<0,即x∈[-1

9、,0)時(shí),同理a≤-. g(x)在區(qū)間[-1,0)上單調(diào)遞增, ∴g(x)min=g(-1)=4,從而a≤4,綜上可知a=4. 答案 4 【點(diǎn)評(píng)】 本題考查了分類討論思想構(gòu)造函數(shù),同時(shí)利用導(dǎo)數(shù)的知識(shí)來(lái)解決. 12.已知函數(shù)f(x)的自變量取值區(qū)間為A,若其值域也為A,則稱區(qū)間A為f(x)的保值區(qū)間.若g(x)=x+m-lnx的保值區(qū)間是[2,+∞),則m的值為________.   解析 g′(x)=1-=,當(dāng)x≥2時(shí),函數(shù)g(x)為增函數(shù),因此g(x)的值域?yàn)閇2+m-ln2,+∞),因此2+m-ln2=2,故m=ln2. 答案 ln2 三、解答題 13.已知函數(shù)f(x

10、)=ax3+bx2+cx在點(diǎn)x0處取得極大值5,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過(guò)(1,0),(2,0)點(diǎn),如圖所示. (1)求x0的值; (2)求a,b,c的值. 解析 (1)由f′(x)隨x變化的情況 x (-∞,1) 1 (1,2) 2 (2,+∞) f′(x) + 0 - 0 + 可知當(dāng)x=1時(shí)f(x)取到極大值5,則x0=1 (2)f′(x)=3ax2+2bx+c,a>0 由已知條件x=1,x=2為方程3ax2+2bx+c=0, 的兩根,因此解得a=2,b=-9,c=12. 14.已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)

11、x=1處的切線為l: 3x-y+1=0,若x=時(shí),y=f(x)有極值. (1)求a,b,c的值; (2)求y=f(x)在[-3,1]上的最大值和最小值. 解析:(1)由f(x)=x3+ax2+bx+c, 得f′(x)=3x2+2ax+b, 當(dāng)x=1時(shí),切線l的斜率為3,可得2a+b=0.① 當(dāng)x=時(shí),y=f(x)有極值, 則f′=0,可得4a+3b+4=0.② 由①②解得a=2,b=-4. 由于切點(diǎn)的橫坐標(biāo)為x=1,∴f(1)=4, ∴1+a+b+c=4,∴c=5. ∴a=2,b=-4,c=5. (2)由(1)可得f(x)=x3+2x2-4x+5, ∴f′(x)=3

12、x2+4x-4, 令f′(x)=0,得x1=-2,x2=. 當(dāng)x變化時(shí),y、y′的取值及變化如下表: x -3 (-3,-2) -2 1 y′ + 0 - 0 + y 8 單調(diào)遞增↗ 13 單調(diào)遞減↘ 單調(diào)遞增↗ 4 ∴y=f(x)在[-3,1]上的最大值為13,最小值為. 15.設(shè)f(x)=-x3+x2+2ax. (1)若f(x)在上存在單調(diào)遞增區(qū)間,求a的取值范圍; (2)當(dāng)0<a<2時(shí),f(x)在[1,4]上的最小值為-,求f(x)在該區(qū)間上的最大值. 解析 (1)由f′(x)=-x2+x+2a=-2++2a,

13、當(dāng)x∈時(shí),f′(x)的最大值為f′=+2a;令+2a>0,得a>-. 所以,當(dāng)a>-時(shí),f(x)在上存在單調(diào)遞增區(qū)間.即f(x)在上存在單調(diào)遞增區(qū)間時(shí),a的取值范圍是 (2)令f′(x)=0,得兩根x1=,x2=. 所以f(x)在(-∞,x1),(x2,+∞)上單調(diào)遞減, 在(x1,x2)上單調(diào)遞增. 當(dāng)0<a<2時(shí),有x1<1<x2<4, 所以f(x)在[1,4]上的最大值為f(x2), 又f(4)-f(1)=-+6a<0,即f(4)<f(1). 所以f(x)在[1,4]上的最小值為f(4)=8a-=-. 得a=1,x2=2,從而f(x)在[1,4]上的最大值為f(2)=.

14、 16.設(shè)函數(shù)f(x)=x--aln x(a∈R). (1)討論f(x)的單調(diào)性; (2)若f(x)有兩個(gè)極值點(diǎn)x1和x2,記過(guò)點(diǎn)A(x1,f(x1)),B(x2,f(x2))的直線的斜率為k.問(wèn):是否存在a,使得k=2-a?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由. 思路分析 先求導(dǎo),通分后發(fā)現(xiàn)f′(x)的符號(hào)與a有關(guān),應(yīng)對(duì)a進(jìn)行分類,依據(jù)方程的判別式來(lái)分類. 解析 (1)f(x)的定義域?yàn)?0,+∞). f′(x)=1+-=. 令g(x)=x2-ax+1,其判別式Δ=a2-4. ①當(dāng)|a|≤2時(shí),Δ≤0,f′(x)≥0.故f(x)在(0,+∞)上單調(diào)遞增. ②當(dāng)a<-

15、2時(shí),Δ>0,g(x)=0的兩根都小于0.在(0,+∞)上,f′(x)>0.故f(x)在(0,+∞)上單調(diào)遞增. ③當(dāng)a>2時(shí),Δ>0,g(x)=0的兩根為x1=, x2=. 當(dāng)0<x<x1時(shí),f′(x)>0,當(dāng)x1<x<x2時(shí),f′(x)<0; 當(dāng)x>x2時(shí),f′(x)>0.故f(x)分別在(0,x1),(x2,+∞)上單調(diào)遞增,在(x1,x2)上單調(diào)遞減. (2)由(1)知,a>2. 因?yàn)閒(x1)-f(x2)=(x1-x2)+-a(ln x1-ln x2),所以,k==1+-a·. 又由(1)知,x1x2=1,于是k=2-a·. 若存在a,使得k=2-a,則=1. 即ln x1-ln x2=x1-x2. 由x1x2=1得x2--2ln x2=0(x2>1).(*) 再由(1)知,函數(shù)h(t)=t--2ln t在(0,+∞)上單調(diào)遞增,而x2>1,所以x2--2ln x2>1--2 ln 1=0.這與(*)式矛盾. 故不存在a,使得k=2-a. 【點(diǎn)評(píng)】 本題充分體現(xiàn)了分類討論思想.近幾年新課標(biāo)高考常考查含參數(shù)的導(dǎo)數(shù)問(wèn)題,難度中等偏上,考生最容易失分的就是對(duì)參數(shù)的分類標(biāo)準(zhǔn)把握不準(zhǔn),導(dǎo)致分類不全等 7

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲