(全國通用)高考數(shù)學二輪復習 專題二 數(shù)列 第3講 數(shù)列的綜合問題課件 理

上傳人:細水****9 文檔編號:158803893 上傳時間:2022-10-06 格式:PPT 頁數(shù):53 大?。?.33MB
收藏 版權申訴 舉報 下載
(全國通用)高考數(shù)學二輪復習 專題二 數(shù)列 第3講 數(shù)列的綜合問題課件 理_第1頁
第1頁 / 共53頁
(全國通用)高考數(shù)學二輪復習 專題二 數(shù)列 第3講 數(shù)列的綜合問題課件 理_第2頁
第2頁 / 共53頁
(全國通用)高考數(shù)學二輪復習 專題二 數(shù)列 第3講 數(shù)列的綜合問題課件 理_第3頁
第3頁 / 共53頁

下載文檔到電腦,查找使用更方便

7 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(全國通用)高考數(shù)學二輪復習 專題二 數(shù)列 第3講 數(shù)列的綜合問題課件 理》由會員分享,可在線閱讀,更多相關《(全國通用)高考數(shù)學二輪復習 專題二 數(shù)列 第3講 數(shù)列的綜合問題課件 理(53頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第3講數(shù)列的綜合問題專題二數(shù)列板塊三專題突破核心考點考情考向分析1.數(shù)列的綜合問題,往往將數(shù)列與函數(shù)、不等式結合,探求數(shù)列中的最值或證明不等式.2.以等差數(shù)列、等比數(shù)列為背景,利用函數(shù)觀點探求參數(shù)的值或范圍.3.將數(shù)列與實際應用問題相結合,考查數(shù)學建模和數(shù)學應用能力.熱點分類突破真題押題精練內容索引熱點分類突破1.數(shù)列an中,an與Sn的關系熱點一利用Sn,an的關系式求an2.求數(shù)列通項的常用方法(1)公式法:利用等差(比)數(shù)列求通項公式.(2)在已知數(shù)列an中,滿足an1anf(n),且f(1)f(2)f(n)可求,則可用累加法求數(shù)列的通項an.(3)在已知數(shù)列an中,滿足 f(n),且f

2、(1)f(2)f(n)可求,則可用累乘法求數(shù)列的通項an.(4)將遞推關系進行變換,轉化為常見數(shù)列(等差、等比數(shù)列).解答例例1已知等差數(shù)列an中,a22,a3a58,數(shù)列bn中,b12,其前n項和Sn滿足:bn1Sn2(nN*).(1)求數(shù)列an,bn的通項公式;解解a22,a3a58,2d23d8,d1,ann(nN*).bn1Sn2(nN*),bnSn12(nN*,n2).由,得bn1bnSnSn1bn(nN*,n2),bn12bn(nN*,n2).b12,b22b1,bn是首項為2,公比為2的等比數(shù)列,bn2n(nN*).解答兩式相減,得給出Sn與an的遞推關系,求an,常用思路:一是

3、利用SnSn1an(n2)轉化為an的遞推關系,再求其通項公式;二是轉化為Sn的遞推關系,先求出Sn與n之間的關系,再求an.思維升華思維升華解答跟蹤演練跟蹤演練1(2018綿陽診斷性考試)已知數(shù)列an的前n項和Sn滿足:a1anS1Sn.(1)求數(shù)列an的通項公式;解解由已知a1anS1Sn,當n2時,由已知可得a1an1S1Sn1,得a1(anan1)an.若a10,則an0,此時數(shù)列an的通項公式為an0.若a12,則2(anan1)an,化簡得an2an1,即此時數(shù)列an是以2為首項,2為公比的等比數(shù)列,故an2n(nN*).綜上所述,數(shù)列an的通項公式為an0或an2n.解答(2)若

4、an0,數(shù)列 的前n項和為Tn,試問當n為何值時,Tn最小?并求出最小值.解解因為an0,故an2n.由n50,解得n5,所以當n4或n5時,Tn最小,熱點二數(shù)列與函數(shù)、不等式的綜合問題數(shù)列與函數(shù)的綜合問題一般是利用函數(shù)作為背景,給出數(shù)列所滿足的條件,通常利用點在曲線上給出Sn的表達式,還有以曲線上的切點為背景的問題,解決這類問題的關鍵在于利用數(shù)列與函數(shù)的對應關系,將條件進行準確的轉化.數(shù)列與不等式的綜合問題一般以數(shù)列為載體,考查最值問題,不等關系或恒成立問題.解答例例2(2018遵義聯(lián)考)已知函數(shù)f(x)ln(1x).(1)若x0時,f(x)0,求的最小值;解解由已知可得f(0)0,若0,則

5、當x0時,f(x)0,f(x)單調遞增,f(x)f(0)0,不合題意;則當x0時,f(x)0).(1)求A市2019年的碳排放總量(用含m的式子表示);解解設2018年的碳排放總量為a1,2019年的碳排放總量為a2,由已知,a14000.9m,a20.9(4000.9m)m4000.920.9mm3241.9m.解答(2)若A市永遠不需要采取緊急限排措施,求m的取值范圍.解解a30.9(4000.920.9mm)m4000.930.92m0.9mm,an4000.9n0.9n1m0.9n2m0.9mm(40010m)0.9n10m.由已知nN*,an550,(1)當40010m0,即m40時

6、,顯然滿足題意;(2)當40010m0,即m40時,由指數(shù)函數(shù)的性質可得(40010m)0.910m550,解得m190.綜合得m40;(3)當40010m40時,由指數(shù)函數(shù)的性質可得10m550,解得m55,綜合得40m55.綜上可得所求m的范圍是(0,55.常見數(shù)列應用題模型的求解方法(1)產值模型:原來產值的基礎數(shù)為N,平均增長率為p,對于時間n的總產值yN(1p)n.(2)銀行儲蓄復利公式:按復利計算利息的一種儲蓄,本金為a元,每期的利率為r,存期為n,則本利和ya(1r)n.(3)銀行儲蓄單利公式:利息按單利計算,本金為a元,每期的利率為r,存期為n,則本利和ya(1nr).(4)分

7、期付款模型:a為貸款總額,r為年利率,b為等額還款數(shù),則b .思維升華思維升華跟蹤演練跟蹤演練3(2018上海崇明區(qū)模擬)2016 年崇明區(qū)政府投資 8 千萬元啟動休閑體育新鄉(xiāng)村旅游項目.規(guī)劃從 2017 年起,在今后的若干年內,每年繼續(xù)投資 2 千萬元用于此項目.2016 年該項目的凈收入為 5 百萬元,并預測在相當長的年份里,每年的凈收入均在上一年的基礎上增長50%.記 2016 年為第 1 年,f(n)為第 1 年至此后第n(nN*)年的累計利潤(注:含第n年,累計利潤累計凈收入累計投入,單位:千萬元),且當f(n)為正值時,認為該項目贏利.解答(1)試求f(n)的表達式;解解由題意知,

8、第1年至此后第n(nN*)年的累計投入為82(n1)2n6(千萬元),第1年至此后第n(nN*)年的累計凈收入為解答(2)根據(jù)預測,該項目將從哪一年開始并持續(xù)贏利?請說明理由.當n3時,f(n1)f(n)0,故當n4時,f(n)遞增.該項目將從第8年開始并持續(xù)贏利.答:答:該項目將從2023年開始并持續(xù)贏利.x4.從而當x1,4)時,f(x)0,f(x)單調遞增.該項目將從第8年開始并持續(xù)贏利.答:答:該項目將從2023年開始并持續(xù)贏利.真題押題精練1.(2018全國)記Sn為數(shù)列an的前n項和.若Sn2an1,則S6_.真題體驗解析63答案解析解析Sn2an1,當n2時,Sn12an11,a

9、nSnSn12an2an1(n2),即an2an1(n2).當n1時,a1S12a11,得a11.數(shù)列an是首項a11,公比q2的等比數(shù)列,S612663.2.(2017山東)已知xn是各項均為正數(shù)的等比數(shù)列,且x1x23,x3x22.(1)求數(shù)列xn的通項公式;解答解解設數(shù)列xn的公比為q.所以3q25q20,由已知得q0,所以q2,x11.因此數(shù)列xn的通項公式為xn2n1(nN*).(2)如圖,在平面直角坐標系xOy中,依次連接點P1(x1,1),P2(x2,2),Pn1(xn1,n1)得到折線P1P2Pn1,求由該折線與直線y0,xx1,xxn1所圍成的區(qū)域的面積Tn.解答解解過P1,

10、P2,Pn1向x軸作垂線,垂足分別為Q1,Q2,Qn1.由(1)得xn1xn2n2n12n1,記梯形PnPn1Qn1Qn的面積為bn,所以Tnb1b2bn321520721(2n1)2n3(2n1)2n2.又2Tn320521722(2n1)2n2(2n1)2n1,得Tn321(2222n1)(2n1)2n1押題預測已知數(shù)列an的前n項和Sn滿足關系式Snkan1,k為不等于0的常數(shù).(1)試判斷數(shù)列an是否為等比數(shù)列;押題依據(jù)押題依據(jù)本題綜合考查數(shù)列知識,考查反證法的數(shù)學方法及邏輯推理能力.解答押題依據(jù)解解若數(shù)列an是等比數(shù)列,則由n1得a1S1ka2,從而a2ka3.又取n2,得a1a2S2ka3,于是a10,顯然矛盾,故數(shù)列an不是等比數(shù)列.押題依據(jù)押題依據(jù)是高考的熱點問題,即數(shù)列與不等式的完美結合,其中將求數(shù)列前n項和的常用方法“裂項相消法”與“錯位相減法”結合在一起,考查了綜合分析問題、解決問題的能力.解答押題依據(jù)2nb從而Snan1.當n2時,由Sn1an,得anSnSn1an1an,從而其前n項和Sn2n2(nN*).由得bnn2,記C2121220n2n2,則2C2120221n2n1,即n2n900,因為nN*且n1,故n9,從而最小正整數(shù)n的值是10.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲