高三數(shù)學(xué)二輪復(fù)習(xí) 第2部分 必考補充專題 專題限時集訓(xùn)17 專題6 突破點17 函數(shù)與方程 理-人教高三數(shù)學(xué)試題

上傳人:文*** 文檔編號:240690239 上傳時間:2024-04-30 格式:DOC 頁數(shù):10 大?。?99.50KB
收藏 版權(quán)申訴 舉報 下載
高三數(shù)學(xué)二輪復(fù)習(xí) 第2部分 必考補充專題 專題限時集訓(xùn)17 專題6 突破點17 函數(shù)與方程 理-人教高三數(shù)學(xué)試題_第1頁
第1頁 / 共10頁
高三數(shù)學(xué)二輪復(fù)習(xí) 第2部分 必考補充專題 專題限時集訓(xùn)17 專題6 突破點17 函數(shù)與方程 理-人教高三數(shù)學(xué)試題_第2頁
第2頁 / 共10頁
高三數(shù)學(xué)二輪復(fù)習(xí) 第2部分 必考補充專題 專題限時集訓(xùn)17 專題6 突破點17 函數(shù)與方程 理-人教高三數(shù)學(xué)試題_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高三數(shù)學(xué)二輪復(fù)習(xí) 第2部分 必考補充專題 專題限時集訓(xùn)17 專題6 突破點17 函數(shù)與方程 理-人教高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《高三數(shù)學(xué)二輪復(fù)習(xí) 第2部分 必考補充專題 專題限時集訓(xùn)17 專題6 突破點17 函數(shù)與方程 理-人教高三數(shù)學(xué)試題(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題限時集訓(xùn)(十七) 函數(shù)與方程 A組 高考達標] 一、選擇題 1.(2016·武漢一模)函數(shù)f(x)=ln x+x3-9的零點所在的區(qū)間為(  ) A.(0,1)       B.(1,2) C.(2,3) D.(3,4) C 由于函數(shù)f(x)=ln x+x3-9在(0,+∞)上是增函數(shù),f(2)=ln 2-1<0,f(3)=ln 3+18>0,故函數(shù)f(x)=ln x+x3-9在區(qū)間(2,3)上有唯一的零點.] 2.(2016·張掖一模)已知函數(shù)f(x)=ex+x,g(x)=ln x+x,h(x)=x-的零點依次為a,b,c,則(  ) A.c<b<a B.a(chǎn)<b<c

2、 C.c<a<b D.b<a<c B 由f(x)=0得ex=-x,由g(x)=0得ln x=-x.由h(x)=0得x=1,即c=1. 在坐標系中,分別作出函數(shù)y=ex,y=-x,y=ln x的圖象, 由圖象可知a<0,0<b<1,所以a<b<c.] 3.(2016·武漢模擬)已知函數(shù)f(x)=則函數(shù)g(x)=f(1-x)-1的零點個數(shù)為(  ) A.1    B.2 C.3    D.4 C g(x)=f(1-x)-1 = = 當(dāng)x≥1時,函數(shù)g(x)有1個零點;當(dāng)x<1時,函數(shù)有2個零點,所以函數(shù)的零點個數(shù)為3,故選C.] 4.(2016·山東實驗中學(xué)模

3、擬)已知函數(shù)f(x)=(a∈R),若函數(shù)f(x)在R上有兩個零點,則a的取值范圍是(  ) A.(-∞,-1) B.(-∞,0) C.(-1,0) D.-1,0) D 當(dāng)x>0時,f(x)=3x-1有一個零點x=,所以只需要當(dāng)x≤0時,ex+a=0有一個根即可,即ex=-a.當(dāng)x≤0時,ex∈(0,1],所以-a∈(0,1],即a∈-1,0),故選D.] 5.(2016·安慶二模)已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-k僅有一個零點,則k的取值范圍是(  ) A. B.(-∞,0)∪ C.(-∞,0) D.(-∞,0)∪ D 函數(shù)f(x)=函數(shù)g(x)=f(x)-k僅有

4、一個零點,即f(x)=k只有一個解,在平面直角坐標系中畫出y=f(x)的圖象,結(jié)合函數(shù)圖象可知,方程只有一個解時,k∈(-∞,0)∪,故選D.] 二、填空題 6.(2016·宜昌模擬)已知f(x)是定義在R上且周期為3的函數(shù),當(dāng)x∈0,3)時,f(x)=.若函數(shù)y=f(x)-a在區(qū)間-3,4]上有10個零點(互不相同),則實數(shù)a的取值范圍是________.  當(dāng)x∈0,3)時,f(x)==,由f(x)是周期為3的函數(shù),作出f(x)在-3,4]上的圖象,如圖. 由題意知方程a=f(x)在-3,4]上有10個不同的根. 由圖可知a∈.] 7.(2016·西安模擬)函數(shù)f(x)

5、=|x-1|+2cos πx(-4≤x≤6)的所有零點之和為________. 10 問題可轉(zhuǎn)化為y=|x-1|與y=-2cos πx在-4≤x≤6的交點的橫坐標的和,因為兩個函數(shù)圖象均關(guān)于x=1對稱,所以x=1兩側(cè)的交點對稱,那么兩對應(yīng)交點的橫坐標的和為2,分別畫出兩個函數(shù)的圖象(圖略),易知x=1兩側(cè)分別有5個交點,所以所求和為5×2=10.] 8.(2016·南寧二模)已知函數(shù)f(x)=若f(0)=-2,f(-1)=1,則函數(shù)g(x)=f(x)+x的零點個數(shù)為________. 【導(dǎo)學(xué)號:85952064】 3 依題意得解得令g(x)=0,得f(x)+x=0,該方程等價于①或②

6、解①得x=2,解②得x=-1或x=-2,因此,函數(shù)g(x)=f(x)+x的零點個數(shù)為3.] 三、解答題 9.已知f(x)=|2x-1|+ax-5(a是常數(shù),a∈R). (1)當(dāng)a=1時,求不等式f(x)≥0的解集; (2)如果函數(shù)y=f(x)恰有兩個不同的零點,求a的取值范圍. 解] (1)當(dāng)a=1時, f(x)=|2x-1|+x-5=2分 由解得x≥2;由解得x≤-4. 所以f(x)≥0的解集為{x|x≥2或x≤-4}.6分 (2)由f(x)=0, 得|2x-1|=-ax+5. 作出y=|2x-1|和y=-ax+5的圖象,10分 觀察可以知道,當(dāng)-2<a<2時,這

7、兩個函數(shù)的圖象有兩個不同的交點,即函數(shù)y=f(x)有兩個不同的零點. 故a的取值范圍是(-2,2).12分 10.(名師押題)已知函數(shù)fn(x)=xln x-(n∈N*,e=2.718 28…為自然對數(shù)的底數(shù)). (1)求曲線y=f1(x)在點(1,f1(1))處的切線方程; (2)討論函數(shù)fn(x)的零點個數(shù). 解] (1)因為f1(x)=xln x-x2, 所以f1′(x)=ln x+1-2x, 所以f1′(1)=1-2=-1. 又f1(1)=-1,所以曲線y=f1(x)在點(1,f1(1))處的切線方程為y+1=-(x-1),即y=-x.4分 (2)令fn(x)=0,得

8、xln x-=0(n∈N*,x>0), 所以nln x-x=0. 令g(x)=nln x-x,則函數(shù)fn(x)的零點與函數(shù)g(x)=nln x-x的零點相同. 因為g′(x)=-1=,令g′(x)=0,得x=n, 所以當(dāng)x>n時,g′(x)<0;當(dāng)0<x<n時,g′(x)>0, 所以函數(shù)g(x)在區(qū)間(0,n]上單調(diào)遞增,在區(qū)間n,+∞)上單調(diào)遞減. 所以函數(shù)g(x)在x=n處有最大值,且g(n)=nln n-n.8分 ①當(dāng)n=1時,g(1)=ln 1-1=-1<0,所以函數(shù)g(x)=nln x-x的零點個數(shù)為0; ②當(dāng)n=2時,g(2)=2ln 2-2<2ln e-2=0,所

9、以函數(shù)g(x)=nln x-x的零點個數(shù)為0; ③當(dāng)n≥3時,g(n)=nln n-n=n(ln n-1)≥n(ln 3-1)>n(ln e-1)=0, 因為g(e2n)=nln e2n-e2n<2n2-4n=2n2-(1+3)n<2n2-<2n2-1+3n+3n(n-1)]=-n2-1<0,且g(1)<0, 所以由函數(shù)零點的存在性定理,可得函數(shù)g(x)=nln x-x在區(qū)間(1,n)和(n,+∞)內(nèi)都恰有一個零點.所以函數(shù)g(x)=nln x-x的零點個數(shù)為2. 綜上所述,當(dāng)n=1或n=2時,函數(shù)fn(x)的零點個數(shù)為0;當(dāng)n≥3且n∈N*時,函數(shù)fn(x)的零點個數(shù)為2.12分

10、B組 名校沖刺] 一、選擇題 1.(2016·南昌二模)若函數(shù)f(x)滿足f(x)+1=,當(dāng)x∈0,1]時,f(x)=x.若在區(qū)間(-1,1]內(nèi),g(x)=f(x)-mx-2m有兩個零點,則實數(shù)m的取值范圍是(  ) A.0<m< B.0<m≤ C.<m<1 D.<m≤1 B 當(dāng)-1<x<0時,0<x+1<1, 所以f(x+1)=x+1, 從而f(x)=-1=-1, 于是f(x)= f(x)-mx-2m=0?f(x)=m(x+2),由圖象可知0<m≤kAB=.] 2.(2016·新余九校聯(lián)考)定義在R上的函數(shù)f(x)滿足f(x)+f(x+4)=16,當(dāng)x∈(0,4]

11、時,f(x)=x2-2x,則函數(shù)f(x)在-4,2 016]上的零點個數(shù)是(  ) A.504 B.505 C.1 008 D.1 009 B ∵f(x)+f(x+4)=16,∴f(x+4)+f(x+8)=16, ∴f(x)=f(x+8),∴函數(shù)f(x)是R上周期為8的函數(shù).又f(2)=f(4)=0,2 020=8×252+4,f(2)=f(10)=f(18)=…=f(8×251+2),f(-4)=f(4)=f(8×251+4),故函數(shù)f(x)在-4,2 016]上的零點個數(shù)是251+1+251+2=505,故選B.] 3.(2016·臨汾模擬)函數(shù)f(x)=若方程f(x)=-x

12、+a有且只有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍為(  ) 【導(dǎo)學(xué)號:85952065】 A.(-∞,0) B.0,1) C.(-∞,1) D.0,+∞) C 函數(shù)f(x)=的圖象如圖所示, 作出直線l:y=a-x,向左平移直線l,觀察可得函數(shù)y=f(x)的圖象與直線l:y=-x+a有兩個交點,則方程f(x)=-x+a有且只有兩個不相等的實數(shù)根時,a<1,故選C.] 4.(2016·衡陽模擬)函數(shù)f(x)的定義域為-1,1],圖象如圖17-1(1)所示,函數(shù)g(x)的定義域為-2,2],圖象如圖17-1(2)所示,方程f(g(x))=0有m個實數(shù)根,方程g(f(x))=0有

13、n個實數(shù)根,則m+n=(  )  (1)              (2) 圖17-1 A.14    B.12 C.10    D.8 A 由題圖(1)可知,若f(g(x))=0, 由g(x)=-1或g(x)=0或g(x)=1, 由題圖(2)知,g(x)=-1時,x=-1或x=1; g(x)=0時,x的值有3個; g(x)=1時,x=2或x=-2,故m=7. 若g(f(x))=0, 則f(x)=-1.5或f(x)=1.5或f(x)=0, 由題圖(1)知,f(x)=1.5與f(x)=-1.5時,x的值各有2個; f(x)=0時,x=-1或x=1或x=0,故n=7.

14、 故m+n=14.故選A.] 二、填空題 5.(2016·中原名校聯(lián)考)定義在R上的奇函數(shù)f(x),當(dāng)x≥0時,f(x)=則關(guān)于x的函數(shù)F(x)=f(x)-a(0<a<1)的所有零點之和為________. 1-3a 函數(shù)f(x)和y=a的圖象如圖所示, 由圖可知,f(x)的圖象與直線y=a有5個交點, 所以函數(shù)F(x)=f(x)-a有5個零點.從小到大依次設(shè)為x1,x2,x3,x4,x5, 則x1+x2=-8,x4+x5=8. 當(dāng)-2≤x<0時,0<-x≤2,所以f(-x)=log(-x+1)=-log3(1-x), 即f(x)=log3(1-x),-2≤x<0,由f(

15、x)=log3(1-x)=a,解得x=1-3a,即x3=1-3a,所以函數(shù)F(x)=f(x)-a(0<a<1)的所有零點之和為x1+x2+x3+x4+x5=1-3a.] 6.(2016·衡水模擬)已知函數(shù)f(x)=x,g(x)=logx,記函數(shù)h(x)=則函數(shù)F(x)=h(x)+x-5的所有零點的和為________. 5 由題意知函數(shù)h(x)的圖象如圖所示, 易知函數(shù)h(x)的圖象關(guān)于直線y=x對稱,函數(shù)F(x)所有零點的和就是函數(shù)y=h(x)與函數(shù)y=5-x圖象交點橫坐標的和,設(shè)圖象交點的橫坐標分別為x1,x2,因為兩函數(shù)圖象的交點關(guān)于直線y=x對稱,所以=5-,所以x1+x

16、2=5.] 三、解答題 7.已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù). (1)求k的值; (2)設(shè)g(x)=log4,若方程f(x)=g(x)有且僅有一解,求實數(shù)a的取值范圍. 解] (1)由函數(shù)f(x)是偶函數(shù)可知,f(x)=f(-x),所以log4(4x+1)+kx=log4(4-x+1)-kx, 所以log4=-2kx,即x=-2kx對一切x∈R恒成立,所以k=-.4分 (2)由已知f(x)=g(x),有且僅有一解,即方程log4(4x+1)-x=log4(a·2x-a)有且只有一個實根,即方程2x+=a·2x-a有且只有一個實根. 令t=2x>0,

17、則方程(a-1)t2-at-1=0有且只有一個正根.8分 ①當(dāng)a=1時,則t=-不合題意; ②當(dāng)a≠1時,Δ=0,解得a=或-3. 若a=,則t=-2,不合題意; 若a=-3,則t=; ③若方程有一個正根與一個負根,即<0,解得a>1. 綜上所述,實數(shù)a的取值范圍是{-3}∪(1,+∞).12分 8.已知函數(shù)f(x)=-x2+2ex+m-1,g(x)=x+(x>0). (1)若g(x)=m有實根,求m的取值范圍; (2)試確定m的取值范圍,使得g(x)-f(x)=0有兩個相異實根. 【導(dǎo)學(xué)號:85952066】 解] (1)∵g(x)=x+≥2=2e,等號成立的條件是x=e,故g(x)的值域是2e,+∞). 因而只需m≥2e,g(x)=m有實根.4分 (2)g(x)-f(x)=0有兩個相異的實根,即g(x)與f(x)的圖象有兩個不同的交點.作出g(x)=x+(x>0)和f(x)的圖象如圖. 8分 ∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,其最大值為m-1+e2, 故當(dāng)m-1+e2>2e,即m>-e2+2e+1時, g(x)與f(x)的圖象有兩個不同的交點, 即g(x)-f(x)=0有兩個相異實根, ∴m的取值范圍是m>-e2+2e+1.12分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲