蘇教版數(shù)學(xué)選修2-1:第2章 圓錐曲線與方程 第2章章末總結(jié) 課時作業(yè)(含答案)

上傳人:每**** 文檔編號:33497224 上傳時間:2021-10-17 格式:DOC 頁數(shù):8 大?。?36KB
收藏 版權(quán)申訴 舉報 下載
蘇教版數(shù)學(xué)選修2-1:第2章 圓錐曲線與方程 第2章章末總結(jié) 課時作業(yè)(含答案)_第1頁
第1頁 / 共8頁
蘇教版數(shù)學(xué)選修2-1:第2章 圓錐曲線與方程 第2章章末總結(jié) 課時作業(yè)(含答案)_第2頁
第2頁 / 共8頁
蘇教版數(shù)學(xué)選修2-1:第2章 圓錐曲線與方程 第2章章末總結(jié) 課時作業(yè)(含答案)_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

8 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《蘇教版數(shù)學(xué)選修2-1:第2章 圓錐曲線與方程 第2章章末總結(jié) 課時作業(yè)(含答案)》由會員分享,可在線閱讀,更多相關(guān)《蘇教版數(shù)學(xué)選修2-1:第2章 圓錐曲線與方程 第2章章末總結(jié) 課時作業(yè)(含答案)(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 章末總結(jié) 知識點(diǎn)一 圓錐曲線的定義和性質(zhì) 對于圓錐曲線的有關(guān)問題,要有運(yùn)用圓錐曲線定義解題的意識,“回歸定義”是一種重要的解題策略;應(yīng)用圓錐曲線的性質(zhì)時,要注意與數(shù)形結(jié)合思想、方程思想結(jié)合起來.總之,圓錐曲線的定義、性質(zhì)在解題中有重要作用,要注意靈活運(yùn)用. 例1 已知雙曲線的焦點(diǎn)在x軸上,離心率為2,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),P為雙曲線上一點(diǎn),且∠F1PF2=60,S△PF1F2=12,求雙曲線的標(biāo)準(zhǔn)方程. 知識點(diǎn)二 直線與圓錐曲線的位置關(guān)系 直線與圓錐曲線一般有三種位置關(guān)系:相交、相切、相離. 在直線與

2、雙曲線、拋物線的位置關(guān)系中有一種情況,即直線與其交于一點(diǎn)和切于一點(diǎn),二者在幾何意義上是截然不同的,反映在代數(shù)方程上也是完全不同的,這在解題中既是一個難點(diǎn)也是一個十分容易被忽視的地方.圓錐曲線的切線是圓錐曲線的割線與圓錐曲線的兩個交點(diǎn)無限靠近時的極限情況,反映在消元后的方程上,就是一元二次方程有兩個相等的實(shí)數(shù)根,即判別式等于零;而與圓錐曲線有一個交點(diǎn)的直線,是一種特殊的情況(拋物線中與對稱軸平行,雙曲線中與漸近線平行),反映在消元后的方程上,該方程是一次的. 例2  如圖所示,O為坐標(biāo)原點(diǎn),過點(diǎn)P(2,0)且斜率為k的直線l交拋物線y2=2x于M(x1,y1),N(x2,y2)兩

3、點(diǎn). (1)求x1x2與y1y2的值; (2)求證:OM⊥ON. 知識點(diǎn)三 軌跡問題 軌跡是解析幾何的基本問題,求解的方法有以下幾種: (1)直接法:建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)動點(diǎn)為(x,y),根據(jù)幾何條件直接尋求x、y之間的關(guān)系式. (2)代入法:利用所求曲線上的動點(diǎn)與某一已知曲線上的動點(diǎn)的關(guān)系,把所求動點(diǎn)轉(zhuǎn)換為已知動點(diǎn).具體地說,就是用所求動點(diǎn)的坐標(biāo)x、y來表示已知動點(diǎn)的坐標(biāo)并代入已知動點(diǎn)滿足的曲線的方程,由此即可求得所求動點(diǎn)坐標(biāo)x、y之間的關(guān)系式. (3)定義法:如果所給幾何條件正好符合圓、橢圓、雙曲線、拋物線等曲線的定義,則

4、可直接利用這些已知曲線的方程寫出動點(diǎn)的軌跡方程. (4)參數(shù)法:當(dāng)很難找到形成曲線的動點(diǎn)P(x,y)的坐標(biāo)x,y所滿足的關(guān)系式時,借助第三個變量t,建立t和x,t和y的關(guān)系式x=φ(t),y=Φ(t),再通過一些條件消掉t就間接地找到了x和y所滿足的方程,從而求出動點(diǎn)P(x,y)所形成的曲線的普通方程. 例3 設(shè)點(diǎn)A、B是拋物線y2=4px (p>0)上除原點(diǎn)O以外的兩個動點(diǎn),已知OA⊥OB,OM⊥AB,垂足為M,求點(diǎn)M的軌跡方程,并說明它表示什么曲線? 知識點(diǎn)四 圓錐曲線中的定點(diǎn)、定值問題 圓錐曲線中的定點(diǎn)、定值問題是高考命題的一個熱點(diǎn)

5、,也是圓錐曲線問題中的一個難點(diǎn),解決這個難點(diǎn)沒有常規(guī)的方法,但解決這個難點(diǎn)的基本思想是明確的,定點(diǎn)、定值問題必然是在變化中所表現(xiàn)出來的不變的量,那么就可以用變化的量表示問題的直線方程 、數(shù)量積、比例關(guān)系等,這些直線方程、數(shù)量積、比例關(guān)系不受變化的量所影響的某個點(diǎn)或值,就是要求的定點(diǎn)、定值.化解這類問題難點(diǎn)的關(guān)鍵就是引進(jìn)變化的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的量. 例4 若直線l:y=kx+m與橢圓+=1相交于A、B兩點(diǎn)(A、B不是左、右頂點(diǎn)),A2為橢圓的右頂點(diǎn)且AA2⊥BA2,求證:直線l過定點(diǎn).

6、 知識點(diǎn)五 圓錐曲線中的最值、范圍問題 圓錐曲線中的最值、范圍問題,是高考熱點(diǎn),主要有以下兩種求解策略: (1)平面幾何法 平面幾何法求最值問題,主要是運(yùn)用圓錐曲線的定義和平面幾何知識求解. (2)目標(biāo)函數(shù)法 建立目標(biāo)函數(shù)解與圓錐曲線有關(guān)的最值問題,是常規(guī)方法,其關(guān)鍵是選取適當(dāng)?shù)淖兞拷⒛繕?biāo)函數(shù),然后運(yùn)用求函數(shù)最值的方法確定最值. 例5 已知A(4,0),B(2,2)是橢圓+=1內(nèi)的兩定點(diǎn),點(diǎn)M是橢圓上的動點(diǎn),求MA+MB的最值. 例6 已知F1、F2為橢圓x2+=1的上、下兩個焦點(diǎn),AB是過焦點(diǎn)

7、F1的一條動弦,求△ABF2面積的最大值. 章末總結(jié) 重點(diǎn)解讀 例1 解  如圖所示,設(shè)雙曲線方程為-=1 (a>0,b>0). ∵e==2,∴c=2a. 由雙曲線的定義, 得|PF1-PF2|=2a=c, 在△PF1F2中,由余弦定理,得: F1F=PF+PF-2PF1PF2cos 60 =(PF1-PF2)2+2PF1PF2(1-cos 60), 即4c2=c2+PF1PF2.① 又S△PF1F2=12, ∴PF1PF2sin 60=12, 即PF1PF2=48.② 由①②,得c2=16,c=4,則a=2,b2=c2-a2=

8、12, ∴所求的雙曲線方程為-=1. 例2 (1)解 過點(diǎn)P(2,0)且斜率為k的直線方程為:y=k(x-2). 把y=k(x-2)代入y2=2x, 消去y得k2x2-(4k2+2)x+4k2=0, 由于直線與拋物線交于不同兩點(diǎn), 故k2≠0且Δ=(4k2+2)2-16k4=16k2+4>0, x1x2=4,x1+x2=4+, ∵M(jìn)、N兩點(diǎn)在拋物線上, ∴yy=4x1x2=16, 而y1y2<0,∴y1y2=-4. (2)證明∵ =(x1,y1), =(x2,y2), ∴=x1x2+y1y2=4-4=0. ∴⊥,即OM⊥ON. 例3 解 設(shè)直線OA的方程為y=kx

9、 (k≠1,因?yàn)楫?dāng)k=1時,直線AB的斜率不存在),則直線OB的方程為y=-,進(jìn)而可求A、 B(4pk2,-4pk). 于是直線AB的斜率為kAB=, 從而kOM=, ∴直線OM的方程為y=x,① 直線AB的方程為y+4pk=(x-4pk2).② 將①②相乘,得y2+4pky=-x(x-4pk2), 即x2+y2=-4pky+4pk2x=4p(k2x-ky),③ 又k2x-ky=x,代入③式并化簡, 得(x-2p)2+y2=4p2. 當(dāng)k=1時,易求得直線AB的方程為x=4p. 故此時點(diǎn)M的坐標(biāo)為(4p,0),也在(x-2p)2+y2=4p2 (x≠0)上. ∴

10、點(diǎn)M的軌跡方程為(x-2p)2+y2=4p2 (x≠0), ∴其軌跡是以(2p,0)為圓心,半徑為2p的圓,去掉坐標(biāo)原點(diǎn). 例4  證明 設(shè)A(x1,y1), B(x2,y2), 聯(lián)立 得(3+4k2)x2+8mkx+4(m2-3)=0, 則 即 又y1y2=(kx1+m)(kx2+m) =k2x1x2+mk(x1+x2)+m2 =. ∵橢圓的右頂點(diǎn)為A2(2,0),AA2⊥BA2, ∴(x1-2)(x2-2)+y1y2=0. ∴y1y2+x1x2-2(x1+x2)+4=0. ∴+++4=0. ∴7m2+16km+4k2=0, 解得m1=-2k,m2=-,

11、且均滿足3+4k2-m2>0. 當(dāng)m1=-2k時,l的方程為y=k(x-2), 直線過定點(diǎn)(2,0),與已知矛盾. 當(dāng)m2=-時,l的方程為y=k,直線過定點(diǎn),∴直線l過定點(diǎn). 例5 解 因?yàn)锳(4,0)是橢圓的右焦點(diǎn),設(shè)A′為橢圓的左 焦點(diǎn),則A′(-4,0),由橢圓定義知MA+MA′=10. 如圖所示,則MA+MB=MA+MA′+MB-MA′=10+MB-MA′≤10+A′B. 當(dāng)點(diǎn)M在BA′的延長線上時取等號. 所以當(dāng)M為射線BA′與橢圓的交點(diǎn)時, (MA+MB)max=10+A′B=10+2. 又如圖所示,MA+MB=MA+MA′-MA′+MB =10-(MA′-MB) ≥10-A′B, 當(dāng)M在A′B的延長線上時取等號. 所以當(dāng)M為射線A′B與橢圓的交點(diǎn)時, (MA+MB)min=10-A′B=10-2. 例6 解 由題意,F(xiàn)1F2=2. 設(shè)直線AB方程為y=kx+1, 代入橢圓方程2x2+y2=2, 得(k2+2)x2+2kx-1=0, 則xA+xB=-,xAxB=-, ∴|xA-xB|=. S△ABF2=F1F2|xA-xB|=2 =2≤2=. 當(dāng)=,即k=0時, S△ABF2有最大面積為. 希望對大家有所幫助,多謝您的瀏覽!

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲