方差分析與協(xié)方差分析基本功課

上傳人:仙*** 文檔編號:34394405 上傳時間:2021-10-21 格式:PPT 頁數(shù):56 大小:1.57MB
收藏 版權申訴 舉報 下載
方差分析與協(xié)方差分析基本功課_第1頁
第1頁 / 共56頁
方差分析與協(xié)方差分析基本功課_第2頁
第2頁 / 共56頁
方差分析與協(xié)方差分析基本功課_第3頁
第3頁 / 共56頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《方差分析與協(xié)方差分析基本功課》由會員分享,可在線閱讀,更多相關《方差分析與協(xié)方差分析基本功課(56頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、方差分析和協(xié)方差分析第5組1教書育人 在針對連續(xù)變量的統(tǒng)計推斷方法中,最常用的有t 檢驗和方差分析兩種 四種不同的顏色包裝對飲料銷售量的影響(四個水平,分類變量) 兩兩t 檢驗?2教書育人不能做t 檢驗 如果有K(K3)個平均數(shù),若用兩兩比較的方法來檢驗,則需作K(K-1)/2次檢驗,不但程序繁瑣,而且相當于從t 分布中隨機抽取多個t 值,其落在大于臨界值的范圍內(nèi)的概率大大增加,犯類錯誤的概率大大增加:如6次檢驗H0的概率是0.95時的誤差為:1-0.956 =0.265。3教書育人 方差分析概念 第一類因素:可以控制的控制因素 第二類因素:不能控制的隨機因素 受前兩類因素影響的事物為觀察變量

2、 方差分析目的:分析控制變量的不同水平是否對觀察變量產(chǎn)生了顯著影響,檢驗各個水平下觀察變量的均值是否相等4教書育人 方差分析分類之一 單變量方差分析:一個觀察變量 單因方差分析中的控制變量只有一個 多因素方差分析中的控制變量有多個 多變量方差分析:多個觀察變量5教書育人 方差分析分類之二 一般方差分析:因變量是定量變量,自變量是定類數(shù)據(jù) 協(xié)方差分析:將很難控制的因素作為協(xié)變量,在排除協(xié)變量影響的條件下,分析控制變量對觀察變量的影響,從而更加準確地對控制變量進行評價。協(xié)變量一定要是連續(xù)數(shù)值型。 非定量方差分析:因變量為定序變量6教書育人 統(tǒng)計技術分類圖定量因變量一個自變量多個自變量二分變量多分變

3、量T檢驗單因子方差分析定類定類和定距定距N因子方差分析協(xié)方差分析回歸分析一個因變量多個因變量多變量方差分析因變量非定量因變量非定量方差分析7教書育人 方差分析原理 目的:通過方差的比較來檢驗各個水平下的觀察值的均值是否相等 觀察值差異:觀察值存在差異,差異的產(chǎn)生來自兩個方面。 系統(tǒng)性差異:由控制變量的不同水平造成的,例如飲料的不同顏色帶來不同的銷售量 隨機性差異:由于抽選樣本的隨機性而產(chǎn)生的差異,例如,相同顏色的飲料在不同的商場銷售量也不相同。8教書育人方差分析的基本思想(單因素)組間變異總變異組內(nèi)變異組內(nèi)只包含隨機誤差組間既包括隨機誤差,也包括系統(tǒng)誤差9教書育人 X1X2X3X4X5X組間變

4、異組內(nèi)變異AB10教書育人 X1X2X3X4X5X組間變異組內(nèi)變異 AB11教書育人單因素方差分析邏輯與步驟(One-Way ANOVA) 前提假設 模型與假設 平方和的分解與F 檢驗 多重比較(事后檢驗) 關聯(lián)強度與效應值12教書育人方差分析的前提條件(1)每個水平下的因變量應當服從正態(tài)分布。方差分析對分布假設有穩(wěn)健性(robust),即正態(tài)性不滿足時,統(tǒng)計結(jié)果變化不大,因此一般并不要求檢驗總體的正態(tài)性。(2)變異可加性。各因素對離差平方和的影響可以分割成幾個可以加在一起的部分。(多因素)(3)獨立性。觀察對象是來自所研究因素的各個水平之下的獨立隨機抽樣13教書育人(4)方差齊性(homog

5、eneity of variance),也稱變異的同質(zhì)性,各個水平下的總體具有相同的方差。這是方差分析一個很重要的前提,因此在進行方差分析之前,應當進行方差齊性檢驗。 Bartlett檢驗法 Levene F 檢驗 最大方差與最小方差之比3,初步認為方差齊同。14教書育人方差不齊若方差齊性的假定不滿足,可考慮如下策略: a.檢查某些表現(xiàn)“特殊”的觀測值,看能否將其剔除,用剩下的數(shù)據(jù)進行方差分析。 b.使用無方差齊性假設的多重比較方法。 c.數(shù)據(jù)變換,用變換(平方根變換、對數(shù)變換等)后的數(shù)據(jù)進行方差分析。正態(tài)性轉(zhuǎn)換。 d. 非參數(shù)檢驗15教書育人模型與假設 模型表達式(單因素)Y=+a+e 建立

6、假設,確定檢驗水準 012:kH0.05;0.01 k組總體均數(shù)不全相等。 1:H16教書育人方差分析表 組間變異體現(xiàn)了因素A的效應,組內(nèi)變異則被視作誤差。ASS1k AMSEAMSMSESS(1)k nEMSTSS1nk 來源平方和 自由度均方F 值P 值組間組內(nèi)總和確定P 值,做出統(tǒng)計推斷17教書育人18教書育人事后比較(posteriori/post hoc comparison)F 檢驗顯著說明各組均值并不相同(至少兩組不同),但不能回答到底哪幾組不同。 通過對各組均值之間的配對比較來進一步檢驗到底哪些均值之間存在差異。 方法眾多,不下20種。19教書育人LSD法:最靈敏,會犯假陽性錯

7、誤;Sidak法:比LSD法保守;Bonferroni法:比Sidak法更為保守一些;常用Scheffe法:多用于進行比較的兩組間樣本含量不等時;Dunnet法:常用于多個試驗組與一個對照組的比較;S-N-K法:尋找同質(zhì)亞組的方法;Turkey法:最遲鈍,要求各組樣本含量相同;Duncan法:與Sidak法類似。均數(shù)兩兩比較方法20教書育人關聯(lián)強度 (strength of association)與效應值 (effect size)的度量實驗處理引致的效應的大小或者數(shù)據(jù)的變異有多少部分是由實驗處理造成的。 Eta平方 凈(偏)Eta平方 Omega平方 Cohens f(具體內(nèi)容見附錄)21

8、教書育人雙因素(無交互作用)試驗的方差分析表方差來源因素A總和平方和ASSBSSTSS自由度AdfEdfTdf均方和AAASSMSdfEEESSMSdfF 值AAEMSFMSF 值臨介值(1 ,11 )Faab因素B誤差ESSBdfBBBSSMSdfBBEMSFMS(1 ,11 )Fbab,ETABETABdfdfdffSSSSSSSS注意 各因素離差平方和的自由度為水平數(shù)減一,總平方和的自由度為試驗總次數(shù)減一。22教書育人雙因素(有重復)試驗方差分析表方差來源因素A總和平方和ASSBSSTSS自由度AdfEdfTdf均方和AAASSMSdfEEESSMSdfF 值AAEMSFMSF 值臨介值

9、(1 ,1 )Faab n因素B誤差ESSBdfBBBSSMSdfBBEMSFMS(1 ,1 )Fbab nA BA BSSA BdfA BA BA BMSSSdfA BA BEMSFMS(11 ,1 )Fabab nA BABdfdfdf這里23教書育人方差分析的應用范圍: (一)單因素多個樣本均數(shù)的比較:1. 完全隨機設計:只安排一種處理因素,不安排任何配伍因素。2. 隨機化區(qū)組設計:只安排一種處理因素,安排一種配伍因素。 3. 拉丁方設計:只安排一種處理因素,安排兩種配伍因素。 24教書育人(二)多因素樣本均數(shù)間的比較:1.析因設計:安排兩種或兩種以上處理因素, 分析處理因素間的交互作用

10、2.裂區(qū)設計:安排兩種或兩種以上處理因素, 分析處理因素間的交互作用3.交叉設計:安排兩種或兩種以上處理因素, 分析處理因素間的交互作用(三)多個樣本均數(shù)向量間的比較 多元方差分析:結(jié)果變量有兩個以上,需要綜合評價。(四)回歸方程的假設檢驗 25教書育人協(xié)方差分析26教書育人 概念:將方差分析和回歸分析結(jié)合起來的一種統(tǒng)計分析方法 當試驗指標(Y)的變異既受一個或幾個分類變量,也受一個或幾個連續(xù)變量的影響,可采用協(xié)方差分析方差分析:一個或幾個因子(分類變量)對變量Y(連續(xù)變量)的影響回歸分析:一個或幾個變量(連續(xù)變量)對變量Y (連續(xù)變量)的影響 27教書育人目的 消除連續(xù)變量對Y的影響,使方差

11、分析的檢驗功效更高,結(jié)果更可靠 連續(xù)變量可能會增大 Y 的組間差異,導致錯誤結(jié)論 連續(xù)變量可能會增大 Y 的組內(nèi)變異,降低檢驗功效 消除分類變量的影響,使回歸分析的結(jié)果更可靠28教書育人 20名男性籃球運動員和20名大學生的肺活量(cm3)比較籃球運動員肺活量Y大學生肺活量Y4700345052004100 48004000協(xié)方差分析基本思想29教書育人協(xié)方差分析基本思想籃球運動員大學生身高X肺活量Y身高X肺活量Y1854700168345017552001704100 17448001694000 20名男性籃球運動員和20名大學生的肺活量(cm3)比較協(xié)變量30教書育人協(xié)方差分析基本思想

12、比較肺活量時,要消除身高的影響。方法1:抽樣時,選身高相近的。方法2:從統(tǒng)計分析技巧上平衡數(shù)據(jù)。 校正了身高的影響后(回歸分析),再比較兩組肺活量的均數(shù)有無差異(方差分析)。31教書育人協(xié)方差分析基本思想 在方差分析中,用來校正因變量的數(shù)值型變量稱為協(xié)變量(covariable)。 含有協(xié)變量的方差分析稱為協(xié)方差分析。 協(xié)方差分析可提高方差分析的準確度。觀察指標(Y)的總變異:SS總SS協(xié)變量SS處理SS誤差32教書育人協(xié)方差分析的基本思想 其實質(zhì)就是從Y的總離均差平方和中扣除協(xié)變量X對Y的回歸平方和,對剩余(殘差)平方和作進一步分解后再進行方差分析,以更好的評價處理的效應。 SS總總SS回回

13、 SS殘殘 SS總總SS協(xié)變量協(xié)變量SS處理處理SS誤差誤差 SS修正修正SS組內(nèi)殘組內(nèi)殘差差33教書育人身高肺活量GROUP 2.00 1.001X2XX1Y2YY1大學生籃球運動員Y2圖圖1 協(xié)方差分析示意圖協(xié)方差分析示意圖調(diào)調(diào)整整均均數(shù)數(shù)xbay 11xbay 2234教書育人協(xié)方差分析步驟完全隨機設計的協(xié)方差分析 應用條件檢驗 回歸分析 求調(diào)整均數(shù) 對調(diào)整均數(shù)作方差分析35教書育人協(xié)方差分析的假設 協(xié)方差分析的基本假設與方差分析相同,包括變量的正態(tài)性、觀測值獨立、方差齊性等,此外還有三個重要的假設: 因變量與協(xié)方差之間線性關系; 所測量的協(xié)變量不應有誤差,如果選用的是多項的量表,應有高

14、的內(nèi)部一致性信度或重測信度,系數(shù)最好大于0.80。這一假設若被違反會造成犯一類錯誤的概率上升,降低統(tǒng)計檢驗力。 “組內(nèi)回歸系數(shù)同質(zhì)性”(homogeneity of with in rgression),各實驗處理組中一舉協(xié)變量(X)預測因變量(Y)的回歸線的回歸系數(shù)要相等,即斜率相等,各條回歸線平行。如果斜率不等則不宜直接進行協(xié)方差分析。36教書育人協(xié)方差分析的模型和假定回歸分析:*)(ijiijijXXY協(xié)方差分析:ijiijiijeXXaY)(l模型協(xié)變量協(xié)變量Co-variable方差分析:ijiijaYijiiijijeaXXY)(ijiijiijeXXaY)(37教書育人38教書育

15、人Thanks!40教書育人問題:為什么一個比較均數(shù)差異的方法竟稱為方差分析? 這種命名是因為在檢驗均數(shù)間差異是否具有統(tǒng)計學意義的過程中,我們實際上是通過比較方差而得到的。 與t 檢驗直接比較兩組的平均數(shù)的做法不同,方差分析把“平均數(shù)之間差異是否顯著”的問題轉(zhuǎn)化為“平均數(shù)組間變異是否顯著”的問題,通過“組間變異”與“組內(nèi)變異”的對比,進行F 檢驗檢驗,從整體上同時比較多組的平均數(shù)之同時比較多組的平均數(shù)之間間是否存在顯著差異。41教書育人 LSD (費舍最小顯著差異法, Fishers least significant difference) 該方法是對檢驗兩總體均值是否相等的t檢驗方法的總體

16、方差估計加以修正(用MSE代替)而得到的。 ()11()ijijXXtt nkMSEnn特點檢驗敏感性高,即水平間的均值只要存在一定程度的微小差異就可能被檢驗出來。但該方法沒有控制范第一類錯誤的概率。42教書育人 S-N-K(Student-Newman-Keuls, q檢驗) 首先把各組均值排序,用每一比較的兩個均值在排序序列種相差的等級數(shù)來確定不同的q 臨界值。 ( ,)11()2ijijeXijXXXXqq r dfSEMSEnn兩均值的rank之差是一種有效劃分相似性子集的方法,該方法是一種有效劃分相似性子集的方法,該方法適用于各水平下觀測值個數(shù)相等的情況。適用于各水平下觀測值個數(shù)相等

17、的情況。43教書育人 Tukey法(honesty significant different, HSD) 與SNK法類似,不同之處在于不論各組均值的大小次序,均使用同一臨界值。 ( ,)11()2ijijeXijXXXXqq k dfSEMSEnn組數(shù)它采用q統(tǒng)計量,適用于各水平下觀測值個數(shù)相等的情況。與LSD方法比較,較好的控制了范第一類錯誤的概率。44教書育人Bonferroni校正(以t 分布作為檢驗分布,對檢驗水準進行調(diào)整)與LSD方法基本相同。不同的是它控制了范第一類錯誤的概率。在每次兩兩組的檢驗中,它將顯著水平除以兩兩檢驗的總次數(shù)。 在比較的次數(shù)較多時,該方法就不太適合。 45教

18、書育人 DunnettDunnett方法方法 是一種唯一用于多個處理組和一個對照組是一種唯一用于多個處理組和一個對照組比較的方法。比較的方法。46教書育人SPSSSPSS提供的常用多重比較檢驗方法提供的常用多重比較檢驗方法1 1、TambaneTambanes T2:s T2: 基于基于t t檢驗的保守的多重比較方法。檢驗的保守的多重比較方法。不滿足方差齊性不滿足方差齊性多重多重檢驗方法檢驗方法2 2、DunnettDunnetts T3:s T3: 基于學生化極大模的多重比較方法。基于學生化極大模的多重比較方法。3 3、Games-Howell:Games-Howell: 非參數(shù)多重比較方法

19、。非參數(shù)多重比較方法。4 4、 DunnettDunnetts C:s C:基于學生化極差的多重比較方基于學生化極差的多重比較方法,是一種可信區(qū)間的方法。法,是一種可信區(qū)間的方法。47教書育人 Eta平方(Eta-Squared,2),又稱關聯(lián)強度(correlation ratio),因變量的變異被自變量解釋的百分比。 凈Eta平方(partial Eta-Squared,p2),多因素ANOVA中,扣除了其他自變量后某自變量的效應。 判斷標準:0.01,??;0.06,中;0.14,大2effecttotalSSSS2effectpeffecterrorSSSSSS48教書育人 Omega平

20、方(Omega squared,2) 當F顯著時,2將會是正值,若為負,則要解釋為0。當樣本很大而使MSw變得很小,F(xiàn)很容易達到顯著,此時若2很小,即使在統(tǒng)計上有意義,實際應用上仍然沒意義。 判斷標準:0.01,小;0.06,中;0.14,大2(1)effectberrorterrorwbtwSSdf MSSSMSSSkMSSSMS49教書育人 Cohens f f f 0.25,中;f 0.40,高 221f50教書育人修正均數(shù)修正均數(shù) 的計算:的計算:jYXXXYcllb組內(nèi)組內(nèi)公共回歸系數(shù):XXbYYjcjj修正均數(shù)間的多重比較:修正均數(shù)間的多重比較:2.011ABY XXXXXYYqS

21、lnal組間組內(nèi)S S2 2y.xy.x為組內(nèi)剩余方差為組內(nèi)剩余方差SS總總 SS回回 SS總殘總殘YYl2XYxyXXlSSbll回SSSS總回SSSS組內(nèi)殘差修正2XYYYXXlSSll組內(nèi)組內(nèi)殘差組內(nèi)組內(nèi)()() ()222ij()ijjijiiXlSSXni組內(nèi)組內(nèi)(X -X2N總殘差 1修正k1Nk組內(nèi)殘差總殘差修正 SSSSSS總殘組內(nèi)殘差修正52教書育人常用試驗設計 1.完全隨機設計(Completely random design) 單因素設計. 優(yōu)點:簡單易行,缺點:只能分析一個因素 2.配伍設計(Randomized block design) 隨機區(qū)組或雙因素無重復試驗設

22、計. 交互作用和方差齊性無法考察 (1) 同一受試對象在同一處理不同水平間的比較復 (2) 將幾個受試對象按一定條件劃分成配伍組,再將每一配伍組的各受試者隨機分配 到各處理組中,每個配伍組的例數(shù)等于處理組個數(shù).53教書育人 3.交叉設計(Cross-over design) 一種特殊的自身對照設計. 克服了試驗前后自身對照由于觀察期間各種非試驗因素 對試驗結(jié)果的影響造成的偏移. 優(yōu)點:節(jié)約樣本含量,能控制時間因素及個體差異對處理方式的影響,均等考慮受試者利 益 缺點:不允許缺失數(shù)據(jù),不適用于短程效果對比 4.析因設計(Factorial design) 當一種因素的質(zhì)和量改變時另一種現(xiàn)象的質(zhì)和

23、量也隨之而改變,幾個因 素間存在交互作用時使用. 優(yōu)點:節(jié)約樣本含量 54教書育人 5.拉丁方設計(Latin square design) 各因素間無交互作用且水平數(shù)相等,三個因素按水平數(shù)r排列成一個r*r 隨機方陣.縱橫兩向結(jié)尾皆為配伍組,可用較少的重復次數(shù),獲得較多的 信息 6.正交設計(Orthogonal design) 三個及以上因素,存在交互作用.用正交表將各試驗因素,各水平之間的 組合進行均勻搭配,從而可以用較少的,有代表性的處理組合,提供充分 有用的信息. 優(yōu)點:高效,快速缺點:基于線性模型的設計55教書育人 7.星點設計(Central composite design) 在正交或析因設計的基礎上將自變量與因變量的關系擴大到曲面效應 面的設計,如二水平析因設計加上極值點和中心點構成,采用二次以上多 元非線性擬合. 8.嵌套設計(Nested design) 各個試驗因素的影響有主次之分,次要因素的各水平是嵌套在主要因素水 平之下的,不能交互. 9.裂區(qū)設計(Split-plot design) 試驗因素并非一次安排,而分二次甚至多次安排.先安排影響最重要的,而 后再加入影響較小,或精確度要求高的次要因素到主要因素的不同水平 中.56教書育人

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲