《高中數(shù)學(xué) (3.2.1 古典概型)示范教案 新人教A版必修》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) (3.2.1 古典概型)示范教案 新人教A版必修(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
課 題:3.2.1 古典概型
教學(xué)目標(biāo):
1.根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,通過(guò)模擬試驗(yàn)讓學(xué)生理解古典概型的特征:試驗(yàn)結(jié)果的有限性和每一個(gè)試驗(yàn)結(jié)果出現(xiàn)的等可能性,觀察類比各個(gè)試驗(yàn),正確理解古典概型的兩大特點(diǎn);樹立從具體到抽象、從特殊到一般的辯證唯物主義觀點(diǎn),培養(yǎng)學(xué)生用隨機(jī)的觀點(diǎn)來(lái)理性地理解世界,使得學(xué)生在體會(huì)概率意義
2.鼓勵(lì)學(xué)生通過(guò)觀察、類比,提高發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,歸納總結(jié)出古典概型的概率計(jì)算公式,掌握古典概型的概率計(jì)算公式;注意公式:P(A)=的使用條件——古典概型,體現(xiàn)了化歸的重要思想.掌握列舉法,學(xué)會(huì)運(yùn)用分類討論的思想解決概率的計(jì)算問(wèn)題,增強(qiáng)學(xué)生數(shù)學(xué)
2、思維情趣.
教學(xué)重點(diǎn):
理解古典概型的概念及利用古典概型求解隨機(jī)事件的概率.
教學(xué)難點(diǎn):
如何判斷一個(gè)試驗(yàn)是否是古典概型,分清在一個(gè)古典概型中某隨機(jī)事件包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).
教學(xué)方法:
講授法
課時(shí)安排:
1課時(shí)
教學(xué)過(guò)程:
一、導(dǎo)入新課:
(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個(gè),即“正面朝上”或“反面朝上”,它們都是隨機(jī)事件.
(2)一個(gè)盒子中有10個(gè)完全相同的球,分別標(biāo)以號(hào)碼1,2,3,…,10,從中任取一球,只有10種不同的結(jié)果,即標(biāo)號(hào)為1,2,3,…,10.
思考討論根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點(diǎn)?
二、新課講解:
3、
1、提出問(wèn)題:
試驗(yàn)一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄“正面朝上”和“反面朝上”的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成20次(最好是整十?dāng)?shù)),最后由學(xué)科代表匯總;
試驗(yàn)二:拋擲一枚質(zhì)地均勻的骰子,分別記錄“1點(diǎn)”“2點(diǎn)”“3點(diǎn)”“4點(diǎn)”“5點(diǎn)”和“6點(diǎn)”的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成60次(最好是整十?dāng)?shù)),最后由學(xué)科代表匯總.
(1)用模擬試驗(yàn)的方法來(lái)求某一隨機(jī)事件的概率好不好?為什么?
(2)根據(jù)以前的學(xué)習(xí),上述兩個(gè)模擬試驗(yàn)的每個(gè)結(jié)果之間都有什么特點(diǎn)?
(3)什么是基本事件?基本事件具有什么特點(diǎn)?
(4)什么是古典概型?它具有什么特點(diǎn)?
(5)對(duì)于古典概型,應(yīng)怎樣計(jì)算事件的
4、概率?
2、活動(dòng):學(xué)生展示模擬試驗(yàn)的操作方法和試驗(yàn)結(jié)果,并與同學(xué)交流活動(dòng)感受,討論可能出現(xiàn)的情況,師生共同匯總方法、結(jié)果和感受.
3、討論結(jié)果:(1)用模擬試驗(yàn)的方法來(lái)求某一隨機(jī)事件的概率不好,因?yàn)樾枰M(jìn)行大量的試驗(yàn),同時(shí)我們只是把隨機(jī)事件出現(xiàn)的頻率近似地認(rèn)為隨機(jī)事件的概率,存在一定的誤差.
1 / 4
(2)上述試驗(yàn)一的兩個(gè)結(jié)果是“正面朝上”和“反面朝上”,它們都是隨機(jī)事件,出現(xiàn)的概率是相等的,都是0.5.上述試驗(yàn)二的6個(gè)結(jié)果是“1點(diǎn)”“2點(diǎn)”“3點(diǎn)”“4點(diǎn)”“5點(diǎn)”和“6點(diǎn)”,它們也都是隨機(jī)事件,出現(xiàn)的概率是相等的,都是.
(3)根據(jù)以前的學(xué)習(xí),上述試驗(yàn)一的兩個(gè)結(jié)果“正面朝上
5、”和“反面朝上”,它們都是隨機(jī)事件;上述試驗(yàn)二的6個(gè)結(jié)果“1點(diǎn)”“2點(diǎn)”“3點(diǎn)”“4點(diǎn)”“5點(diǎn)”和“6點(diǎn)”,它們都是隨機(jī)事件,像這類隨機(jī)事件我們稱為基本事件(elementary event);它是試驗(yàn)的每一個(gè)可能結(jié)果.
基本事件具有如下的兩個(gè)特點(diǎn):
①任何兩個(gè)基本事件是互斥的;
②任何事件(除不可能事件)都可以表示成基本事件的和.
(4)在一個(gè)試驗(yàn)中如果
①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);(有限性)
②每個(gè)基本事件出現(xiàn)的可能性相等.(等可能性)
我們將具有這兩個(gè)特點(diǎn)的概率模型稱為古典概率模型(classical models of probability),簡(jiǎn)稱古典概型
6、.
向一個(gè)圓面內(nèi)隨機(jī)地投射一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,你認(rèn)為這是古典概型嗎?為什么?
因?yàn)樵囼?yàn)的所有可能結(jié)果是圓面內(nèi)所有的點(diǎn),試驗(yàn)的所有可能結(jié)果數(shù)是無(wú)限的,雖然每一個(gè)試驗(yàn)結(jié)果出現(xiàn)的“可能性相同”,但這個(gè)試驗(yàn)不滿足古典概型的第一個(gè)條件.
如下圖,某同學(xué)隨機(jī)地向一靶心進(jìn)行射擊,這一試驗(yàn)的結(jié)果只有有限個(gè):命中10環(huán)、命中9環(huán)……命中5環(huán)和不中環(huán).你認(rèn)為這是古典概型嗎?為什么?
不是古典概型,因?yàn)樵囼?yàn)的所有可能結(jié)果只有7個(gè),而命中10環(huán)、命中9環(huán)……命中5環(huán)和不中環(huán)的出現(xiàn)不是等可能的,即不滿足古典概型的第二個(gè)條件.
(5)古典概型,隨機(jī)事件的
7、概率計(jì)算
對(duì)于實(shí)驗(yàn)一中,出現(xiàn)正面朝上的概率與反面朝上的概率相等,即
P(“正面朝上”)=P(“反面朝上”)
由概率的加法公式,得
P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1.
因此P(“正面朝上”)=P(“反面朝上”)=.
即P(“出現(xiàn)正面朝上”)=.
試驗(yàn)二中,出現(xiàn)各個(gè)點(diǎn)的概率相等,即
P(“1點(diǎn)”)=P(“2點(diǎn)”)=P(“3點(diǎn)”)=P(“4點(diǎn)”)=P(“5點(diǎn)”)=P(“6點(diǎn)”).
反復(fù)利用概率的加法公式,我們有P(“1點(diǎn)”)+P(“2點(diǎn)”)+P(“3點(diǎn)”)+P(“4點(diǎn)”)+P(
8、“5點(diǎn)”)+P(“6點(diǎn)”)=P(必然事件)=1.
所以P(“1點(diǎn)”)=P(“2點(diǎn)”)=P(“3點(diǎn)”)=P(“4點(diǎn)”)=P(“5點(diǎn)”)=P(“6點(diǎn)”)=.
進(jìn)一步地,利用加法公式還可以計(jì)算這個(gè)試驗(yàn)中任何一個(gè)事件的概率,例如,
P(“出現(xiàn)偶數(shù)點(diǎn)”)=P(“2點(diǎn)”)+P(“4點(diǎn)”)+P(“6點(diǎn)”)=++==.
即P(“出現(xiàn)偶數(shù)點(diǎn)”)=.
因此根據(jù)上述兩則模擬試驗(yàn),可以概括總結(jié)出,古典概型計(jì)算任何事件的概率計(jì)算公式為:
P(A)=.
在使用古典概型的概率公式時(shí),應(yīng)該注意:
①要判斷該概率模型是不是古典概型;
②要找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)
9、中基本事件的總數(shù).
三、例題講解:
例1 從字母a,b,c,d中任意取出兩個(gè)不同字母的試驗(yàn)中,有哪些基本事件?
活動(dòng):師生交流或討論,我們可以按照字典排序的順序,把所有可能的結(jié)果都列出來(lái).
解:基本事件共有6個(gè):
A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.
點(diǎn)評(píng):一般用列舉法列出所有基本事件的結(jié)果,畫樹狀圖是列舉法的基本方法.
例2 :?jiǎn)芜x題是標(biāo)準(zhǔn)化考試中常用的題型,一般是從A,B,C,D四個(gè)選項(xiàng)中選擇一個(gè)正確答案.如果考生掌握了考查的內(nèi)容,他可以選擇唯一正確的答案.假設(shè)考生不會(huì)做,他隨機(jī)地選擇一個(gè)答案,問(wèn)他答對(duì)的概率是
10、多少?
解:(略)
點(diǎn)評(píng):古典概型解題步驟:
(1)閱讀題目,搜集信息;
(2)判斷是否是等可能事件,并用字母表示事件;
(3)求出基本事件總數(shù)n和事件A所包含的結(jié)果數(shù)m;
(4)用公式P(A)=求出概率并下結(jié)論.
變式訓(xùn)練
1.拋兩枚均勻硬幣,求出現(xiàn)兩個(gè)正面的概率.
2.一次投擲兩顆骰子,求出現(xiàn)的點(diǎn)數(shù)之和為奇數(shù)的概率.
例3 同時(shí)擲兩個(gè)骰子,計(jì)算:
(1)一共有多少種不同的結(jié)果?
(2)其中向上的點(diǎn)數(shù)之和是5的結(jié)果有多少種?
(3)向上的點(diǎn)數(shù)之和是5的概率是多少?
解:(略)
例4 : 假設(shè)儲(chǔ)蓄卡的密碼由4個(gè)數(shù)字組成,每個(gè)數(shù)字可以是0,1,2,…,9十
11、個(gè)數(shù)字中的任意一個(gè).假設(shè)一個(gè)人完全忘記了自己的儲(chǔ)蓄卡密碼,問(wèn)他到自動(dòng)取款機(jī)上隨機(jī)試一次密碼就能取到錢的概率是多少?
解:(略)
例5 : 某種飲料每箱裝6聽,如果其中有2聽不合格,問(wèn)質(zhì)檢人員從中隨機(jī)抽出2聽,檢測(cè)出不合格產(chǎn)品的概率有多大?
解:(略)
四、課堂練習(xí):
教材第130頁(yè)練習(xí):1、2、3
五、課堂小結(jié):
1.古典概型我們將具有
(1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);(有限性)
(2)每個(gè)基本事件出現(xiàn)的可能性相等.(等可能性)
這樣兩個(gè)特點(diǎn)的概率模型稱為古典概率概型,簡(jiǎn)稱古典概型.
2.古典概型計(jì)算任何事件的概率計(jì)算公式
P(A)=.
3.求某個(gè)隨機(jī)事件A包含的基本事件的個(gè)數(shù)和實(shí)驗(yàn)中基本事件的總數(shù)的常用方法是列舉法(畫樹狀圖和列表),應(yīng)做到不重不漏.
六、課后作業(yè)
習(xí)題3.2 A組1、2、3、4.
2、P(A)=.
1.古典概型
3.2.1 古典概型
希望對(duì)大家有所幫助,多謝您的瀏覽!
板書設(shè)計(jì)