高中數(shù)學(xué) 第三講 柯西不等式與排序不等式評估驗收卷 新人教A版選修45
《高中數(shù)學(xué) 第三講 柯西不等式與排序不等式評估驗收卷 新人教A版選修45》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第三講 柯西不等式與排序不等式評估驗收卷 新人教A版選修45(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3
2、3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 第三講第三講 柯西不等式與排序不等式柯西不等式與排序不等式 評估驗收卷(三) (時間:120 分鐘 滿分:150 分) 一、選擇題(本大題共 12 小題,每小題 5 分,共 60 分在每小題給出的四個選項中,只有一項是符合題目要求的) 1設(shè)xy0,則x24y2y21x2的最小值為( ) A9 B9 C10 D0 解析:x22y21x2y2x1x2yy29. 答案:B 2學(xué)校要開運動會,需要買價格不同的獎品 40 件、50 件、2
3、0 件,現(xiàn)在選擇商店中為5 元、3 元、2 元的獎品,則至少要花( ) A300 元 B360 元 C320 元 D340 元 解析:由排序原理,反序和最小 所以最小值為 502403205320(元) 答案:C 3銳角三角形ABC中,設(shè)Pabc2,Qacos Cbcos Bccos A,則P,Q的大小關(guān)系為( ) APQ BPQ CPQ D不能確定 解析:不妨設(shè)ABC,則abc,cos Acos Bcos C, 則由排序不等式有Qacos Cbcos Bccos Aacos Bbcos Cccos AR(2sin Acos B2sin Bcos C2sin Ccos A), Qacos Cb
4、cos Bccos Abcos Accos Bacos CR(2sin Bcos A2sin Ccos B2sin Acos C), 上面兩式相加,得Qacos Cbcos Bccos A12R(2sin Acos B2sin Bcos A2sin Bcos C2sin Ccos B2sin Ccos A2sin Acos C)Rsin(AB)sin(BC)sin(AC)R(sin Csin Asin B)abc2P(R為銳角三角形ABC的外接圓的半徑) 答案:C 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6
5、 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3
6、 D 4 4 3 5 F 3 7 5 4已知 3x22y21,則 3x2y的取值范圍是( ) A0, 5 B 5,0 C 5, 5 D5,5 解析:因為(3x22y2)( 3)2( 2)2( 3x 3 2y 2)2(3x2y)2, 即 5(3x22y2)(3x2y)2(當(dāng)且僅當(dāng)xy時等號成立), 又 3x22y21,所以(3x2y)25,所以 53x2y 5. 答案:C 5設(shè)a,b,c為正數(shù),則(abc)4a9b36c的最小值為( ) A54 6 B9 C121 D8 3 解析:因為a,b,c為正數(shù), 所以(abc)4a9b36c(a)2(b)2(c)22a23b26c2(236)2121.
7、當(dāng)且僅當(dāng)a2,b3,c6 時取等號 答案:C 6已知半圓的直徑AB2R,P是弧AB上一點,則 2|PA|3|PB|的最大值是( ) A. 6R B. 13R C2 13R D4 13R 解析:由 2|PA|3|PB| (2232)(|PA|2|PB|2) 13|AB|2 132R. 答案:C 7函數(shù)f(x) 1cos 2xcos x,則f(x)的最大值是( ) A. 3 B. 2 C1 D2 解析:f(x) 2 sin2 xcos x. 又( 2 sin2 xcos x)2(21)(sin2 xcos2 x)3,所以f(x)的最大值為 3. 答案:A 8已知x21x22x231,y21y22y
8、232,則x1y1x2y2x3y3的最大值是( ) A2 B3 C. 2 D. 3 解析:因為x21x22x231,y21y22y232, 所以(x1y1x2y2x3y3)2(x21x22x23)(y21y22y23)122, 所以x1y1x2y2x3y3 2. 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F
9、F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 當(dāng)x1y1x2y2x3y322時,取“”,故選 C. 答案:C 9已知x,y,z0,且1x2y3z1,則xy2z3的最小值是( ) A5 B6 C8 D9 解析:xy2
10、z31x2y3zxy2z3 1xx2yy23zz329. 所以xy2z3min9.故應(yīng)選 D. 答案:D 10設(shè)a1,a2,a3為正數(shù),則a1a2a3a2a3a1a3a1a2與a1a2a3大小為( ) A B C D 解析:不妨設(shè)a1a2a30,于是1a11a21a3,a2a3a3a1a1a2, 由排序不等式:順序和亂序和,得 a1a2a3a3a1a2a2a3a11a2a2a31a3a3a11a1a1a2a3a1a2. 即a1a2a3a2a3a1a3a1a2a1a2a3. 答案:B 11已知x,y,a,b為正數(shù),且ab10,axby1,xy的最小值為 18,則a,b的值分別為( ) Aa2,b
11、8 Ba8,b2 Ca2,b8 或a8,b2 Da2,b2 或a8,b8 解析:因為xy(xy)axby(ab)2ab2ab18. 又ab10,所以ab16. 所以a2,b8 或a8,b2. 答案:C 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B
12、 C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 12設(shè)c1,c2,cn是a1,a2,an的某一排列(a1,a2,an均為正數(shù)),則a1c1a2c2ancn的最小值是( ) An B.1n C.n D2n 解析:不妨設(shè) 0a1a2an, 則1a11a21an,1c1,1c2,1c
13、n是1a1,1a2,1an的一個排列 再利用排序不等式的反序和亂序和求解, 所以a1c1a2c2ancna1a1a2a2anann, 當(dāng)且僅當(dāng)a1a2an時等號成立故選 A. 答案:A 二、填空題(本大題共 4 小題,每小題 5 分,共 20 分把答案填在題中的橫線上) 13已知a,b,c為非零實數(shù),則(a2b2c2)1a21b21c2的最小值為_ 解析:由(a2b2c2)1a21b21c2 a1ab1bc1c29, 所以所求最小值為 9. 答案:9 14設(shè)a,b0,若a2b25,則a2b的最大值為_ 解析:(1222)(a2b2)(a2b)2,即 25(a2b)2. 所以(a2b)max5.
14、 答案:5 15已知x,y,z(0,),xyz9,則xyz的最大值是_ 解析:(xyz)2(121212)(xyz)3927.所以xyz3 3. 答案:3 3 16設(shè)x,y,zR,若x2y2z24,則x2y2z的最小值為_ 解析:由柯西不等式,得(x2y2z2)12(2)222(x2y2z)2,故(x2y2z)24936. 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C
15、 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 當(dāng)且僅當(dāng)x1y2z2k,k23時,上式取得等號 當(dāng)k23時,x2y2z取得最小值6. 答案:6 三、解答題
16、(本大題共 6 小題,共 70 分解答時應(yīng)寫出必要的文字說明、證明過程或演算步驟) 17(本小題滿分 10 分)設(shè)a(1,0,2),b(x,y,z),若x2y2z216,求ab的最大值 解:因為a(1,0,2),b(x,y,z), 所以abx2z. 由柯西不等式120(2)2(x2y2z2)(x02z)2516(x2z)245x2z4 54 5ab4 5, 故ab的最大值為 4 5. 18 (本小題滿分 12 分)已知 0abc, 求證c2abb2aca2bca2abb2bcc2ca. 證明:因為 0abc, 所以 0abcabc, 所以1ab1ca1bc0, 又 0a2b2c2, 所以c2a
17、bb2aca2bc是順序和,a2abb2bcc2ca是亂序和, 由排序原理可知順序和大于等于亂序和, 即不等式c2abb2aca2bca2abb2bcc2ca成立 19(本小題滿分 12 分)設(shè)a,b,c都是正實數(shù),求證:aabbcc(abc)abc3. 證明:不妨設(shè)abc0,則 lg alg blg c, 據(jù)排序不等式,有alg ablg bclg c blg aclg balg c, alg ablg bclg cclg aalg bblg c, 且alg ablg bclg calg ablg bclg c, 以上三式相加整理,得 3(alg ablg bclg c)(abc)(lg a
18、lg blg c), 即 lg(aabbcc)abc3lg(abc)故aabbcc(abc)abc3. 20(本小題滿分 12 分)設(shè)不等式|x2|1 的解集與關(guān)于x的不等式x2axb0 的6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1
19、 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 解集相同 (1)求a,b的值; (2)求函數(shù)f(x)a x3b5x的最大值,以及取得最大值時x的值 解:(1)不等式|x2|1 的解集為x|x1 或x3, 所以,不等式x2axb0 的解集為x|x1 或x3, 所以a4,b3. (2)函數(shù)的定
20、義域為3,5,顯然有f(x)0,由柯西不等式可得: f(x)4x33 5x 4232 (x3)2( 5x)25 2, 當(dāng)且僅當(dāng) 4 5x3x3時等號成立, 即x10725時,函數(shù)取得最大值 5 2. 21 (本小題滿分 12 分)已知函數(shù)f(x)k|x3|,kR, 且f(x3)0 的解集為1,1 (1)求k的值; (2)若a,b,c是正實數(shù),且1ka12kb13kc1.求證:a2b3c9. (1)解:因為f(x)k|x3|, 所以f(x3)0 等價于|x|k, 由|x|k有解,得k0,且解集為k,k 因為f(x3)0 的解集為1,1 因此k1. (2)證明:由(1)知1a12b13c1,因為a
21、,b,c為正實數(shù) 所以a2b3c(a2b3c)1a12b13c3a2b2baa3c3ca2b3c3c2b32a2b2ba2a3c3ca22b3c3c2b9, 當(dāng)且僅當(dāng)a2b3c時等號成立 因此a2b3c9. 22(本小題滿分 12 分)已知a,b,c為實數(shù),且abc22m0,a214b219c2m10. (1)求證:a214b219c2(abc)214; 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F
22、 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 (2)求實數(shù)m的取值范圍 (1)證明:由柯西不等式,得 a212b213c2(122232)(abc)2. 即a214b219c214(abc)2. 所以a214b219c2(abc)214, 當(dāng)且僅當(dāng)|a|14|b|19|c|時取等號 (2)解:由已知,得abc2m2, a214b219c21m, 所以 14(1m)(2m2)2,即 2m23m50, 所以52m1, 又因為a214b219c21m0, 所以m1,所以52m1.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑施工重大危險源安全管理制度
- 安全培訓(xùn)資料:典型建筑火災(zāi)的防治基本原則與救援技術(shù)
- 企業(yè)雙重預(yù)防體系應(yīng)知應(yīng)會知識問答
- 8 各種煤礦安全考試試題
- 9 危險化學(xué)品經(jīng)營單位安全生產(chǎn)管理人員模擬考試題庫試卷附答案
- 加壓過濾機司機技術(shù)操作規(guī)程
- 樹脂砂混砂工藝知識總結(jié)
- XXXXX現(xiàn)場安全應(yīng)急處置預(yù)案
- 某公司消防安全檢查制度總結(jié)
- 1 煤礦安全檢查工(中級)職業(yè)技能理論知識考核試題含答案
- 4.燃氣安全生產(chǎn)企業(yè)主要負責(zé)人模擬考試題庫試卷含答案
- 工段(班組)級安全檢查表
- D 氯化工藝作業(yè)模擬考試題庫試卷含答案-4
- 建筑起重司索信號工安全操作要點
- 實驗室計量常見的30個問問答題含解析