【創(chuàng)新方案】高考數(shù)學(xué)理一輪突破熱點(diǎn)題型:第2章 第7節(jié) 函數(shù)的圖象

上傳人:仙*** 文檔編號:40239936 上傳時(shí)間:2021-11-15 格式:DOC 頁數(shù):9 大?。?83KB
收藏 版權(quán)申訴 舉報(bào) 下載
【創(chuàng)新方案】高考數(shù)學(xué)理一輪突破熱點(diǎn)題型:第2章 第7節(jié) 函數(shù)的圖象_第1頁
第1頁 / 共9頁
【創(chuàng)新方案】高考數(shù)學(xué)理一輪突破熱點(diǎn)題型:第2章 第7節(jié) 函數(shù)的圖象_第2頁
第2頁 / 共9頁
【創(chuàng)新方案】高考數(shù)學(xué)理一輪突破熱點(diǎn)題型:第2章 第7節(jié) 函數(shù)的圖象_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《【創(chuàng)新方案】高考數(shù)學(xué)理一輪突破熱點(diǎn)題型:第2章 第7節(jié) 函數(shù)的圖象》由會(huì)員分享,可在線閱讀,更多相關(guān)《【創(chuàng)新方案】高考數(shù)學(xué)理一輪突破熱點(diǎn)題型:第2章 第7節(jié) 函數(shù)的圖象(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 考點(diǎn)一 作函數(shù)的圖象   [例1] 作出下列函數(shù)的圖象: (1)y=|x|;    (2)y=|log2(x+1)|; (3)y=; (4)y=x2-2|x|-1. [自主解答] (1)作出y=x的圖象,保留y=x圖象中x≥0的部分,加上y=x的圖象中x>0部分關(guān)于y軸的對稱部分,即得y=|x|的圖象,如圖實(shí)線部分. (2)將函數(shù)y=log2x的圖象向左平移1個(gè)單位,再將x軸下方的部分沿x軸翻折上去,即可得到函數(shù)y=|log2(

2、x+1)|的圖象,如圖. (3)∵y==2+, 故函數(shù)圖象可由y=的圖象向右平移1個(gè)單位,再向上平移2個(gè)單位而得,如圖. (4)∵y=且函數(shù)為偶函數(shù),先用描點(diǎn)法作出[0,+∞)上的圖象,再根據(jù)對稱性作出(-∞,0)上的圖象,即得函數(shù)圖象如圖. 【方法規(guī)律】 函數(shù)圖象的畫法 (1)直接法:當(dāng)函數(shù)表達(dá)式是基本函數(shù)或函數(shù)圖象是解析幾何中熟悉的曲線(如圓、橢圓、雙曲線、拋物線的一部分)時(shí),就可根據(jù)這些函數(shù)或曲線的特征直接作出. (2)圖象變換法:若函數(shù)圖象可由某個(gè)基本函數(shù)的圖象經(jīng)過平移、翻折、對稱變換得到,可利用圖象變換作出. 分別畫出下列函數(shù)的圖象: (1)y=

3、|lg x|;      (2)y=2x+2; (3)y=; (4)y=|log2x-1|. 解:(1)∵y=|lg x|=∴函數(shù)y=|lg x|的圖象如圖(1). 圖(1)      圖(2) (2)將函數(shù)y=2x的圖象向左平移2個(gè)單位即可得到函數(shù)y=2x+2的圖象,如圖(2). (3)∵y==1-,可見原函數(shù)圖象可由y=-圖象向左平移3個(gè)單位,再向上平移1個(gè)單位得到,如圖(3). 圖(3)   圖(4) (4)先作出y=log2x的圖象,再將其圖象向下平移1個(gè)單位,保留x軸上方的部分,將x軸下方的圖象翻折到x軸上方,即得y=|l

4、og2x-1|的圖象,如圖(4).   高頻考點(diǎn) 考點(diǎn)二 識圖與辨圖   1.高考對函數(shù)圖象的考查主要有識圖和辨圖兩個(gè)方面,其中識圖是每年高考的熱點(diǎn)內(nèi)容,題型多為選擇題,難度適中. 2.高考對識圖問題的考查主要有以下幾個(gè)命題角度: (1)借助實(shí)際情景探究函數(shù)圖象; (2)已知解析式確定函數(shù)圖象; (3)已知函數(shù)解析式(或圖象)確定相關(guān)函數(shù)的圖象; (4)借助動(dòng)點(diǎn)探究函數(shù)圖象. [例2] (1)(20xx·湖北高考)小明騎車上學(xué),開始時(shí)勻速行駛,途中因交通堵塞停留了一段時(shí)間后,為了趕時(shí)間加快速度行駛.與以上事件吻合得最好的圖象是(  ) (2)(20

5、xx·山東高考)函數(shù)y=xcos x+sin x的圖象大致為(  )    A     B      C      D (3)(20xx·湖北高考)已知定義在區(qū)間[0,2]上的函數(shù)y=f(x)的圖象如圖所示,則y=-f(2-x)的圖象為(  )       A          B       C          D (4)(20xx·江西高考)如圖,已知l1⊥l2,圓心在l1上、半徑為1 m的圓O在t=0時(shí)與l2相切于點(diǎn)A,圓O沿l1以1 m/s的速度勻速向上移動(dòng),圓被直線l2所截上方圓弧長記為x,令y=cos x,則y與時(shí)間t(0

6、≤t≤1,單位:s)的函數(shù)y=f(t)的圖象大致為(  )    A     B     C      D [自主解答] (1)小明勻速運(yùn)動(dòng)時(shí),所得圖象為一條直線,且距離學(xué)校越來越近,故排除A.因交通堵塞停留了一段時(shí)間,與學(xué)校的距離不變,故排除D.后來為了趕時(shí)間加快速度行駛,故排除B. (2)先判斷函數(shù)y=xcos x+sin x是奇函數(shù),所以排除B;再判斷其零點(diǎn),令y=xcos x+sin x=0,得tan x=-x,畫圖知其在(0,π)上有且僅有一個(gè)零點(diǎn),故排除A、C. (3)法一:由y=f(x)的圖象知f(x)=當(dāng)x∈[0,2]時(shí),2-x∈[0,2],所以f(2-x)

7、=故y=-f(2-x)=故其對應(yīng)的圖象應(yīng)為B. 法二:當(dāng)x=0時(shí),-f(2-x)=-f(2)=-1;當(dāng)x=1時(shí),-f(2-x)=-f(1)=-1.觀察各選項(xiàng),可知應(yīng)選B. (4)如圖,設(shè)∠MON=α,由弧長公式知x=α, 在Rt△AOM中,|AO|=1-t,cos==1-t,∴y=cos x=2cos2-1=2(t-1)2-1(0≤t≤1).故其對應(yīng)的圖象應(yīng)為B. [答案] (1)C (2)D (3)B (4)B 識圖問題的常見類型及解題策略 (1)由實(shí)際情景探究函數(shù)圖象.關(guān)鍵是將生活問題轉(zhuǎn)化為我們熟悉的數(shù)學(xué)問題求解,要注意實(shí)際問題中的定義域問題. (2)由解析式確定函數(shù)

8、圖象.此類問題往往化簡函數(shù)解析式,利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、過定點(diǎn)等)判斷,常用排除法. (3)已知函數(shù)圖象確定相關(guān)函數(shù)的圖象.此類問題主要考查函數(shù)圖象的變換(如平移變換、對稱變換等),要注意函數(shù)y=f(x)與y=f(-x)、y=-f(x)、y=-f(-x)、y=f(|x|)、y=|f(x)|等的相互關(guān)系. (4)借助動(dòng)點(diǎn)探究函數(shù)圖象.解決此類問題可以根據(jù)已知條件求出函數(shù)解析式后再判斷函數(shù)的圖象;也可采用“以靜觀動(dòng)”,即將動(dòng)點(diǎn)處于某些特殊的位置處考察圖象的變化特征,從而作出選擇. 1.如圖,下面的四個(gè)容器高度都相同,將水從容器頂部一個(gè)孔中以相同的速度注入其中,注滿為止.用下面對

9、應(yīng)的圖象表示該容器中水面的高度h和時(shí)間t之間的關(guān)系,其中不正確的個(gè)數(shù)為(  )                       A.1 B.2 C.3 D.4 解析:選A 將水從容器頂部一個(gè)孔中以相同的速度注入其中,容器中水面的高度h和時(shí)間t之間的關(guān)系可以從高度隨時(shí)間的變化率上反映出來;圖①應(yīng)該是勻速的,故下面的圖象不正確;②中的變化率應(yīng)該是越來越慢的,正確;③中的變化規(guī)律是先快后慢再快,正確;④中的變化規(guī)律是先慢后快再慢,也正確,故只有①是錯(cuò)誤的. 2.(20xx·寧波模擬)若loga2<0(a>0,且a≠1),則函數(shù)

10、f(x)=loga(x+1)的圖象大致是(  ) 解析:選B 由loga2<0,得0<a<1,故函數(shù)f(x)=loga(x+1)為減函數(shù),故排除選項(xiàng)A、D.由圖象平移可知f(x)=loga(x+1)的圖象可由y=logax的圖象向左平移1個(gè)單位得到,故選B. 3.已知函數(shù)y=f(x)與y=g(x)的圖象如圖所示,則函數(shù)y=f(x)·g(x)的圖象可能是(  ) 解析:選A 觀察圖象可知,y=f(x)有兩個(gè)零點(diǎn)x1=-,x2=,且y=g(x)在x=0時(shí),函數(shù)值不存在,所以函數(shù)y=f(x)·g(x)在x=0時(shí),函數(shù)值也不存在,故可以排除選項(xiàng)C

11、,D;當(dāng)x∈時(shí),y=f(x)·g(x)的函數(shù)值為負(fù),故排除選項(xiàng)B. 4.已知有四個(gè)平面圖形,分別是三角形、平行四邊形、直角梯形、圓.垂直于x軸的直線l:x=t(0≤t≤a)經(jīng)過原點(diǎn)O向右平行移動(dòng),l在移動(dòng)過程中掃過平面圖形的面積為y(選項(xiàng)中陰影部分),若函數(shù)y=f(t)的大致圖象如圖所示,那么平面圖形的形狀不可能是(  ) 解析:選C 觀察函數(shù)圖象可得函數(shù)y=f(t)在[0,a]上是增函數(shù),即說明隨著直線l的右移,掃過圖形的面積不斷增大,從這個(gè)角度講,四個(gè)圖象都適合.再對圖象作進(jìn)一步分析,圖象首先是向下凸的,說明此時(shí)掃過圖形的面積增加得越來越快,然后是由上凸的,說明此時(shí)掃

12、過圖形的面積增加得越來越慢.根據(jù)這一點(diǎn)很容易判定C項(xiàng)不適合.這是因?yàn)樵贑項(xiàng)中直線l掃到矩形部分時(shí),面積會(huì)呈直線上升. 考點(diǎn)三 函數(shù)圖象的應(yīng)用   [例3] 已知函數(shù)f(x)=x|m-x|(x∈R),且f(4)=0. (1)求實(shí)數(shù)m的值; (2)作出函數(shù)f(x)的圖象并判斷其零點(diǎn)個(gè)數(shù); (3)根據(jù)圖象指出f(x)的單調(diào)遞減區(qū)間; (4)根據(jù)圖象寫出不等式f(x)>0的解集; (5)求集合M={m|使方程f(x)=m有三個(gè)不相等的實(shí)根}. [自主解答] (1)∵f(4)=0,∴4|m-4|=0,即m=4. (2)∵f(x)=x|m-x|=x|4-x|= ∴函數(shù)f

13、(x)的圖象如圖: 由圖象知f(x)有兩個(gè)零點(diǎn). (3)從圖象上觀察可知:f(x)的單調(diào)遞減區(qū)間為[2,4]. (4)從圖象上觀察可知:不等式f(x)>0的解集為{x|0<x<4或x>4}. (5)由圖象可知若y=f(x)與y=m的圖象有三個(gè)不同的交點(diǎn),則0<m<4,故集合M={m|0<m<4}. 【互動(dòng)探究】 保持本例條件不變,求函數(shù)f(x)在[1,5]上的值域. 解:f(1)=3,f(5)=5,借助函數(shù)圖象可知,函數(shù)f(x)在[1,5]上的值域?yàn)閇0,5].      【方法規(guī)律】 1.利用函數(shù)的圖象研究方程根的個(gè)數(shù)

14、 當(dāng)方程與基本函數(shù)有關(guān)時(shí),可以通過函數(shù)圖象來研究方程的根,方程f(x)=0的根就是函數(shù)f(x)圖象與x軸交點(diǎn)的橫坐標(biāo),方程f(x)=g(x)的根就是函數(shù)f(x)與g(x)圖象交點(diǎn)的橫坐標(biāo). 2.利用函數(shù)的圖象研究不等式 當(dāng)不等式問題不能用代數(shù)法求解但其與函數(shù)有關(guān)時(shí),常將不等式問題轉(zhuǎn)化為兩函數(shù)圖象的上、下關(guān)系問題,從而利用數(shù)形結(jié)合求解. 1.(20xx·湖南高考)函數(shù)f(x)=2ln x的圖象與函數(shù)g(x)=x2-4x+5的圖象的交點(diǎn)個(gè)數(shù)為(  ) A.3 B.2 C.1 D.0 解析:選B 在同一直角坐標(biāo)系下畫出函數(shù)f(x)=2l

15、n x與函數(shù)g(x)=x2-4x+5=(x-2)2+1的圖象,如圖所示. ∵f(2)=2ln 2>g(2)=1,∴f(x)與g(x)的圖象的交點(diǎn)個(gè)數(shù)為2,故選B. 2.已知函數(shù)y=的圖象與函數(shù)y=kx-2的圖象恰有 兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是________. 解析:先去掉絕對值符號,在同一直角坐標(biāo)系中作出函數(shù)的圖象,利用數(shù)形結(jié)合求解. 根據(jù)絕對值的意義,y==在直角坐標(biāo)系中作出該函數(shù)的圖象,如圖中實(shí)線所示.根據(jù)圖象可知,當(dāng)0<k<1或1<k<4時(shí)有兩個(gè)交點(diǎn). 答案:(0,1)∪(1,4) ————————————[課堂歸納——通法領(lǐng)

16、悟]———————————————— 1個(gè)注意點(diǎn)——圖象變換中的易錯(cuò)點(diǎn)  在解決函數(shù)圖象的變換問題時(shí),要遵循“只能對函數(shù)關(guān)系式中的x,y變換”的原則,寫出每一次的變換所得圖象對應(yīng)的解析式,這樣才能避免出錯(cuò). 2個(gè)區(qū)別——函數(shù)圖象的對稱問題  (1)一個(gè)函數(shù)的圖象關(guān)于原點(diǎn)對稱與兩個(gè)函數(shù)的圖象關(guān)于原點(diǎn)對稱不同,前者是自身對稱,且為奇函數(shù),后者是兩個(gè)不同的函數(shù)圖象對稱. (2)一個(gè)函數(shù)的圖象關(guān)于y軸對稱與兩個(gè)函數(shù)的圖象關(guān)于y軸對稱也不同,前者也是自身對稱,且為偶函數(shù),后者也是兩個(gè)不同函數(shù)圖象的對稱關(guān)系. 3個(gè)關(guān)鍵點(diǎn)——正確作出函數(shù)圖象的三個(gè)關(guān)鍵點(diǎn)  (1)正確求出函數(shù)的定義域; (2)熟練掌握幾種基本函數(shù)的圖象,如二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、形如y=x+的函數(shù); (3)掌握平移變換、伸縮變換、對稱變換、翻折變換、周期變換等常用的方法技巧,來幫助我們簡化作圖過程.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲