高考數(shù)學 復習 課時規(guī)范練57 事件與概率

上傳人:仙*** 文檔編號:44745562 上傳時間:2021-12-05 格式:DOC 頁數(shù):4 大小:140KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學 復習 課時規(guī)范練57 事件與概率_第1頁
第1頁 / 共4頁
高考數(shù)學 復習 課時規(guī)范練57 事件與概率_第2頁
第2頁 / 共4頁
高考數(shù)學 復習 課時規(guī)范練57 事件與概率_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學 復習 課時規(guī)范練57 事件與概率》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學 復習 課時規(guī)范練57 事件與概率(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 課時規(guī)范練57 事件與概率 一、選擇題 1.下列說法正確的是(  ) A.某事件發(fā)生的頻率為P(A)=1.1 B.不可能事件的概率為0,必然事件的概率為1 C.小概率事件就是不可能發(fā)生的事件,大概率事件就是必然發(fā)生的事件 D.某事件發(fā)生的概率是隨著試驗次數(shù)的變化而變化的 答案:B 解析:概率、頻率的值不能大于1,故A錯;小概率事件不一定不發(fā)生,大概率事件也不一定發(fā)生,故C錯;概率是頻率的穩(wěn)定值,不會隨試驗次數(shù)的變化而變化,故D錯. 2.擲一枚均勻的硬幣兩次,事件M:僅有一次正面朝上;事件N:至多一次正面朝上,則下列結(jié)果正確的是(  ) A.P(M)=,P(N)=

2、B.P(M)=,P(N)= C.P(M)=,P(N)= D.P(M)=,P(N)= 答案:D 解析:Ω={(正,正),(正,反),(反,正),(反,反)},M={(正,反),(反,正)},N={(正,反),(反,正),(反,反)},故P(M)=,P(N)=. 3.從一籃子雞蛋中任取1個,如果其重量小于30克的概率為0.3,重量在[30,40]克的概率為0.5,那么重量不小于30克的概率為(  ) A.0.3 B.0.5 C.0.8 D.0.7 答案:D 4.拋擲一枚質(zhì)地均勻的正方體骰子(六個面上分別寫有1,2,3,4,5,6),若前3次連續(xù)拋到“6點朝上”,則對于第4次拋擲結(jié)

3、果的預測,下列說法中正確的是(  ) A.一定出現(xiàn)“6點朝上” B.出現(xiàn)“6點朝上”的概率大于 C.出現(xiàn)“6點朝上”的概率等于 D.無法預測“6點朝上”的概率 答案:C 解析:隨機事件具有不確定性,與前面的試驗結(jié)果無關(guān).由于正方體骰子的質(zhì)地是均勻的,所以它出現(xiàn)哪一個面朝上的可能性都是相等的. 5.給出以下三個命題: (1)將一枚硬幣拋擲兩次,記事件A:“兩次都出現(xiàn)正面”,事件B:“兩次都出現(xiàn)反面”,則事件A與事件B是對立事件;(2)在命題(1)中,事件A與事件B是互斥事件;(3)在10件產(chǎn)品中有3件是次品,從中任取3件,記事件A:“所取3件中最多有2件是次品”,事件B:“所取3

4、件中至少有2件是次品”,則事件A與事件B是互斥事件. 其中真命題的個數(shù)是(  ) A.0 B.1 C.2 D.3 答案:B 解析:(1)中A與B互斥但不對立;(2)是真命題;(3)事件A與事件B不互斥. 6.從某自動包裝機包裝的食鹽中,隨機抽取20袋,測得各袋的質(zhì)量分別為(單位:g): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499 根據(jù)樣本頻率分布估計總體分布的原理,該自動包裝機包裝的袋裝食鹽質(zhì)量在497.5~501.5 g之間的概率約為(  ) A.0.25 B

5、.0.20 C.0.35 D.0.45[來源:] 答案:A 解析:袋裝食鹽質(zhì)量在497.5~501.5 g之間的有5袋,故所求概率P≈=0.25. 二、填空題 7.從5名學生中選2名學生參加周六、周日社會實踐活動,學生甲被選中而學生乙未被選中的概率是    . 答案: 解析:設(shè)5名學生分別為a1,a2,a3,a4,a5(其中甲是a1,乙是a2),從5名學生中選2名的選法有(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共10種,學生甲被選中而學生乙未被選中的選法有(a1,

6、a3),(a1,a4),(a1,a5),共3種,故所求概率為. 8.箱子中共有2 000只燈泡,隨機選擇100只燈泡進行測試,發(fā)現(xiàn)有10只是壞的,預計整箱中有     只壞燈泡. 答案:200 9.某學校成立了數(shù)學、英語、音樂3個課外興趣小組,3個小組分別有39,32,33個成員,一些成員參加了不止一個小組,具體情況如圖所示.現(xiàn)隨機選取一個成員,他屬于至少2個小組的概率是     ,他屬于不超過2個小組的概率是     . 答案: 解析:“至少2個小組”包含“2個小組”和“3個小組”兩種情況,故他屬于至少2個小組的概率為P=. “不超過2個小組”包含“1個小組”和“2個小組”,

7、其對立事件是“3個小組”. 故他屬于不超過2個小組的概率是 P=1-. 10.某乒乓球隊甲、乙兩名女隊員參加某次乒乓球女子單打比賽,甲奪得冠軍的概率為,乙奪得冠軍的概率為,那么該球隊奪得女子乒乓球單打冠軍的概率為     . 答案: 解析:設(shè)事件A為“甲奪得冠軍”,事件B為“乙奪得冠軍”,則P(A)=,P(B)=,∵事件A和事件B是互斥事件, ∴P(A∪B)=P(A)+P(B)=. 11.現(xiàn)有語文、數(shù)學、英語、物理和化學共5本書,從中任取1本,取出的是理科書的概率為     . 答案: 解析:令取到語文、數(shù)學、英語、物理、化學書分別為事件A,B,C,D,E,則A,B,C,D,

8、E互斥,取到理科書為事件B,D,E的并集. ∴P(B∪D∪E)=P(B)+P(D)+P(E)=. 三、解答題 12.在△ABC中,角A,B,C所對的邊分別是a,b,c,A=30,若將一枚質(zhì)地均勻的正方體骰子先后拋擲兩次,所得的點數(shù)分別為a,b,求滿足條件的三角形有兩個解的概率. 解:要使△ABC有兩個解,需滿足的條件是 因為A=30,所以滿足此條件的a,b的值有b=3,a=2;b=4,a=3;b=5,a=3;b=5,a=4;b=6,a=4;b=6,a=5,共6種情況,所以滿足條件的三角形有兩個解的概率是. 13.下表為某班的英語及數(shù)學成績,全班共有學生50人,成績分為1~5分五個檔

9、次.例如表中所示英語成績?yōu)?分的學生共14人,數(shù)學成績?yōu)?分的共5人.設(shè)x,y分別表示英語成績和數(shù)學成績.      y/分 人數(shù) x/分     5 4[來源:] 3 2 1 5 1 3 1 0 1 4 1 0 7 5 1 3 2 1 0[來源:] 9 3 2 1 b 6 0 a 1 0 0 1 1 3 (1)x=4的概率是多少?x=4且y=3的概率是多少?x≥3的概率是多少? (2)x=2的概率是多少?a+b的值是多少? 解:(1)P(x=4)=; P(x=4,y=3)=, P(x≥3)=P(x=3)

10、+P(x=4)+P(x=5) =. (2)P(x=2)=1-P(x=1)-P(x≥3)=1-. 又∵P(x=2)=,∴a+b=3. 14.甲、乙兩人玩一種游戲,每次由甲、乙各出1到5根手指頭,若和為偶數(shù)算甲贏,否則算乙贏. (1)若以A表示和為6的事件,求P(A). (2)現(xiàn)連玩三次,若以B表示甲至少贏一次的事件,C表示乙至少贏兩次的事件,試問B與C是否為互斥事件?為什么? (3)這種游戲規(guī)則公平嗎?說明理由. 解:(1)甲、乙各出1到5根手指頭,共有55=25種可能結(jié)果,和為6有5種可能結(jié)果. ∴P(A)=. (2)B與C不是互斥事件,理由如下:B與C都包含“甲贏一次,乙

11、贏二次”,事件B與事件C可能同時發(fā)生,故不是互斥事件. (3)和為偶數(shù)有13種可能結(jié)果,其概率為P=,故這種游戲規(guī)則不公平. 15.某商場有獎銷售中,購滿100元商品得1張獎券,多購多得.1 000張獎券為一個開獎單位,設(shè)特等獎1個,一等獎10個,二等獎50個.設(shè)1張獎券中特等獎、一等獎、二等獎的事件分別為A,B,C,求: (1)P(A),P(B),P(C); (2)1張獎券的中獎概率; (3)1張獎券不中特等獎且不中一等獎的概率. 解:(1)P(A)=,P(B)=,P(C)=. 故事件A,B,C的概率分別為. (2)1張獎券中獎包含中特等獎、一等獎、二等獎. 設(shè)“1張獎券中

12、獎”這個事件為M,則M=A∪B∪C. ∵A,B,C兩兩互斥, ∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=. 故1張獎券的中獎概率為. (3)設(shè)“1張獎券不中特等獎且不中一等獎”為事件N,則事件N與“1張獎券中特等獎或中一等獎”為對立事件, ∴P(N)=1-P(A∪B)=1-. 故1張獎券不中特等獎且不中一等獎的概率為. 四、選做題 1.已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},從集合A中選取不相同的兩個數(shù),構(gòu)成平面直角坐標系上的點,觀察點的位置,則事件A={點落在x軸上}與事件B={點落在y軸上}的概率關(guān)系為(  ) A.P(A)>P

13、(B) B.P(A)

14、事件首先是互斥事件,故②正確;對于③,互斥事件不一定是對立事件,如①中兩個事件,故③錯;對于④,事件A,B為對立事件,則這一次試驗中A,B一定有一個要發(fā)生,故④正確.真命題為②④.[來源:] 3.輸血是重要的搶救生命的措施之一,但是要注意同種血型的人可以輸血,O型血可以輸給任一種血型的人,任何人的血都可以輸給AB型血的人,其他不同血型的人不能互相輸血. 黃種人群中各種血型的人所占的比如下表所示: 血型 A B AB O 該血型的人所占比/% 28 29 8 35 小王因病需要輸血,已知小王是B型血,問: (1)任找一個人,其血可以輸給小王的概率是多少? (2)

15、任找一個人,其血不能輸給小王的概率是多少? 解:(1)對任一人,其血型為A,B,AB,O型血的事件分別記為A,B,C,D,它們是互斥的. 由已知,有P(A)=0.28,P(B)=0.29,P(C)=0.08,P(D)=0.35. 因為B,O型血可以輸給B型血的人,故“可以輸給B型血的人”為事件B+D.根據(jù)互斥事件的加法公式,有P(B+D)=P(B)+P(D)=0.29+0.35=0.64. (2)由于A,AB型血不能輸給B型血的人,故“不能輸給B型血的人”為事件A+C,且P(A+C)=P(A)+P(C)=0.28+0.08=0.36. 答:任找一人,其血可以輸給小王的概率為0.64,其血不能輸給小王的概率為0.36.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲