《新編高中數學北師大版選修22教案:第1章 歸納推理 參考教案3》由會員分享,可在線閱讀,更多相關《新編高中數學北師大版選修22教案:第1章 歸納推理 參考教案3(4頁珍藏版)》請在裝配圖網上搜索。
1、新編數學北師大版精品資料
1.1 歸納推理
教學過程:
一:創(chuàng)設情景,引入概念
師:今天我們要學習第一章:推理與證明。那么什么是推理呢?下面請大家仔細看這段flash,體驗一下flash動畫中,人物推理的過程。
(學生觀看flash動畫)。
師:有哪位同學能描述一下這段flash動畫中的人物的推理過程嗎?
生:flash中人物通過觀察,發(fā)現7只烏鴉是黑色的于是得到推理:天下烏鴉一般黑。
師:很好!那么能不能把這個推理的過程用一般化的語言表示出來呢?
生:這是從一個或幾個已有的判斷得到一個新的判斷的過程。
師:非常好!
(
2、引出推理的概念)。
師:推理包括合情推理和演繹推理,而我們今天要學的知識就是合情推理的一種——歸納推理。那么,什么是歸納推理呢?下面我們通過介紹數學中的一個非常有名的猜想讓大家體會一下歸納推理的思想。
(引入哥德巴赫猜想)
師:據說哥德巴赫無意中觀察到:3+7=10,3+17=20,13+17=30,這3個等式。大家看這3個等式都是什么運算?
生:加法運算。
師:對。我們看來這些式子都是簡單的加法運算。但是哥德巴赫卻把它做了一個簡單的變換,他把等號兩邊的式子交換了一下位置,即變?yōu)椋?0=3+7,20=3+17,30=13+17。大家觀察這兩組式子,他們有什么不同之處?
生:變換之前
3、是把兩個數加起來,變換之后卻是把一個數分解成兩個數。
師:大家看等式右邊的這些數有什么特點?
生:都是奇數。
師:那么等式右邊的數又有什么特點呢?
生:都是偶數。
師:那我們就可以得到什么結論?
生:偶數=奇數+奇數。
師:這個結論我們在小學就知道了。大家在挖掘一下,等式右邊的數除了都是奇數外,還有什么其它的特點?
(學生觀察,有人看出這些數還都是質數。)
師:那么我們是否可以得到一個結論:偶數=奇質數+奇質數?
(學生思考,發(fā)現錯誤?。?。
生:不對!2不能分解成兩個奇質數之和。
師:非常好!那么我們看偶數4又行不行呢?
生:不行!
師:那么繼續(xù)往下驗證。
(學生
4、發(fā)現6=3+3,8=5+3,10=5+5,12=5+7,14=7+7……)
師:那我們可以發(fā)現一個什么樣的規(guī)律?
生:大于等于6的偶數可以分解為兩個奇質數之和。
師:這就是哥德巴赫猜想。哥德巴赫猜想的過程就是一個歸納推理的過程。他根據上述部分等式的基本特征,(什么特征呢?即等式左邊的數都是大于6的偶數,右邊是兩個奇質數之和),就猜想出:任何大于等于6的偶數可以分解為兩個奇質數之和?;蛘哒f,由這些個別等式的特征,就得出一個一般性的猜想。那么現在大家能不能用一般性的語言來描述歸納推理的定義?
(學生得出歸納推理的概念)。
師:歸納推理的思想我們在日常生活中也經常用到。大家能不能結合自己生
5、活的實際,舉出幾個例子說明歸納推理的運用。
(學生思考,討論,給出例子)。
二:講解例題,鞏固概念
師:應用歸納推理可以發(fā)現新事實、獲得新結論。我們來看一個數學中的例子。
例題1:觀察下列等式:1+3=4=,
1+3+5=9=,
1+3+5+7=16=,
1+3+5+7+9=25=,
你能猜想到一個怎樣的結論?
練習:觀察下列等式: 1=1
1+8=9,
1+8+27=36,
1+8+27+64=100,
你能猜想到一個怎樣的結論?
例題2:已知數列的第一項,且,試歸納出這個數列的通項公式。
練習:已知,求的值?根據的值,你能夠猜想出的值嗎?你能得到什么結論?
三:問題探究,加深理解
觀察下面的圖形,請指出每個圖形分別有幾個球?按照這個規(guī)律,猜想第5個圖形的形狀應該是怎么樣的?它應該由多少個球構成?第n個圖形有幾個球?
四:布置作業(yè),鞏固提高。
1:課本P7練習 1
2:查閱相關資料,了解課本上提到的“四色猜想”,“費馬猜想”等。