新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 專題探究課1 函數(shù)與導(dǎo)數(shù)中的高考熱點(diǎn)問題 理 北師大版

上傳人:痛*** 文檔編號(hào):61874671 上傳時(shí)間:2022-03-13 格式:DOC 頁(yè)數(shù):6 大?。?5KB
收藏 版權(quán)申訴 舉報(bào) 下載
新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 專題探究課1 函數(shù)與導(dǎo)數(shù)中的高考熱點(diǎn)問題 理 北師大版_第1頁(yè)
第1頁(yè) / 共6頁(yè)
新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 專題探究課1 函數(shù)與導(dǎo)數(shù)中的高考熱點(diǎn)問題 理 北師大版_第2頁(yè)
第2頁(yè) / 共6頁(yè)
新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 專題探究課1 函數(shù)與導(dǎo)數(shù)中的高考熱點(diǎn)問題 理 北師大版_第3頁(yè)
第3頁(yè) / 共6頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 專題探究課1 函數(shù)與導(dǎo)數(shù)中的高考熱點(diǎn)問題 理 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 專題探究課1 函數(shù)與導(dǎo)數(shù)中的高考熱點(diǎn)問題 理 北師大版(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 一) 函數(shù)與導(dǎo)數(shù)中的高考熱點(diǎn)問題 (對(duì)應(yīng)學(xué)生用書第44頁(yè)) [命題解讀] 函數(shù)是中學(xué)數(shù)學(xué)的核心內(nèi)容,導(dǎo)數(shù)是研究函數(shù)的重要工具,因此,函數(shù)與導(dǎo)數(shù)是歷年高考的重點(diǎn)與熱點(diǎn),常涉及的問題有:討論函數(shù)的單調(diào)性(求函數(shù)的單調(diào)區(qū)間)、求極值、求最值、求切線方程、求函數(shù)的零點(diǎn)或方程的根、求參數(shù)的范圍、證明不等式等,涉及的數(shù)學(xué)思想有:函數(shù)與方程、分類討論、數(shù)形結(jié)合、轉(zhuǎn)化與化歸思想等,中、高檔難度均有. 利用導(dǎo)數(shù)研究函數(shù)的性質(zhì) 函數(shù)的單調(diào)性、極值是局部概念,函數(shù)的最值是整體概念,研究函數(shù)的性質(zhì)必須在定義域內(nèi)進(jìn)行,因此,務(wù)必遵循定義域優(yōu)先的原則,本熱點(diǎn)主要有三種考查方式:(1)

2、討論函數(shù)的單調(diào)性或求單調(diào)區(qū)間;(2)求函數(shù)的極值或最值;(3)利用函數(shù)的單調(diào)性、極值、最值,求參數(shù)的范圍.  (20xx·全國(guó)卷Ⅱ)已知函數(shù)f(x)=ln x+a(1-x). (1)討論f(x)的單調(diào)性; (2)當(dāng)f(x)有最大值,且最大值大于2a-2時(shí),求a的取值范圍. [解] (1)f(x)的定義域?yàn)?0,+∞),f′(x)=-a. 若a≤0,則f′(x)>0,所以f(x)在(0,+∞)上單調(diào)遞增. 若a>0,則當(dāng)x∈時(shí),f′(x)>0; 當(dāng)x∈時(shí),f′(x)<0. 所以f(x)在上單調(diào)遞增,在上單調(diào)遞減. (2)由(1)知,當(dāng)a≤0時(shí),f(x)在(0,+∞)上無最大值;

3、 當(dāng)a>0時(shí),f(x)在x=取得最大值,最大值為 f=ln+a=-ln a+a-1. 因此f>2a-2等價(jià)于ln a+a-1<0. 令g(a)=ln a+a-1,則g(a)在(0,+∞)上單調(diào)遞增,g(1)=0. 于是,當(dāng)01時(shí),g(a)>0. 因此,a的取值范圍是(0,1). [規(guī)律方法] 1.研究函數(shù)的性質(zhì),必須在定義域內(nèi)進(jìn)行,因此利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),應(yīng)遵循定義域優(yōu)先的原則. 2.討論函數(shù)的單調(diào)性,求函數(shù)的單調(diào)區(qū)間、極值問題,最終歸結(jié)到判斷f′(x)的符號(hào)問題上,而f′(x)>0或f′(x)<0,最終可轉(zhuǎn)化為一個(gè)一元一次不等式或一元二次不

4、等式問題. 3.若已知f(x)的單調(diào)性,則轉(zhuǎn)化為不等式f′(x)≥0或f′(x)≤0在單調(diào)區(qū)間上恒成立問題求解. [跟蹤訓(xùn)練] (20xx·福州質(zhì)檢)已知函數(shù)f(x)=aln x+x2-ax(a∈R). 【導(dǎo)學(xué)號(hào):79140096】 (1)若x=3是f(x)的極值點(diǎn),求f(x)的單調(diào)區(qū)間; (2)求g(x)=f(x)-2x在區(qū)間[1,e]的最小值h(a). [解] (1)f(x)的定義域?yàn)?0,+∞), f′(x)=+2x-a=, 因?yàn)閤=3是f(x)的極值點(diǎn), 所以f′(3)==0,解得a=9. 所以f′(x)==, 所以當(dāng)0<x<或x>3時(shí),f′(x)>0; 當(dāng)<

5、x<3時(shí),f′(x)<0. 所以f(x)的單調(diào)遞增區(qū)間為和(3,+∞),單調(diào)遞減區(qū)間為. (2)由題知,g(x)=f(x)-2x=aln x+x2-ax-2x. g′(x)=-2=. ①當(dāng)≤1,即a≤2時(shí),g(x)在[1,e]上為增函數(shù), h(a)=g(1)=-a-1; ②當(dāng)1<<e,即2<a<2e時(shí),g(x)在上為減函數(shù),在上為增函數(shù), h(a)=g=aln-a2-a; ③當(dāng)≥e,即a≥2e時(shí),g(x)在[1,e]上為減函數(shù), h(a)=g(e)=(1-e)a+e2-2e. 綜上,h(a)= 利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問題 研究函數(shù)零點(diǎn)的本質(zhì)就是研究函數(shù)的極值

6、的正負(fù),為此,我們可以通過討論函數(shù)的單調(diào)性來解決,求解時(shí)應(yīng)注重等價(jià)轉(zhuǎn)化與數(shù)形結(jié)合思想的應(yīng)用,其主要考查方式有:(1)確定函數(shù)的零點(diǎn)、圖像交點(diǎn)的個(gè)數(shù);(2)由函數(shù)的零點(diǎn)、圖像交點(diǎn)的情況求參數(shù)的取值范圍.  (20xx·全國(guó)卷Ⅰ)已知函數(shù)f(x)=ae2x+(a-2)ex-x. (1)討論f(x)的單調(diào)性; (2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍. [解] (1)f(x)的定義域?yàn)?-∞,+∞), f′(x)=2ae2x+(a-2)ex-1=(aex-1)(2ex+1). (ⅰ)若a≤0,則f′(x)<0,所以f(x)在(-∞,+∞)單調(diào)遞減. (ⅱ)若a>0,則由f′(

7、x)=0得x=-ln a. 當(dāng)x∈(-∞,-ln a)時(shí),f′(x)<0; 當(dāng)x∈(-ln a,+∞)時(shí),f′(x)>0. 所以f(x)在(-∞,-ln a)單調(diào)遞減,在(-ln a,+∞)單調(diào)遞增. (2)(ⅰ)若a≤0,由(1)知,f(x)至多有一個(gè)零點(diǎn). (ⅱ)若a>0,由(1)知,當(dāng)x=-ln a時(shí),f(x)取得最小值,最小值為f(-ln a)=1-+ln a. ①當(dāng)a=1時(shí),由于f(-ln a)=0,故f(x)只有一個(gè)零點(diǎn); ②當(dāng)a∈(1,+∞)時(shí),由于1-+ln a>0, 即f(-ln a)>0,故f(x)沒有零點(diǎn); ③當(dāng)a∈(0,1)時(shí),1-+ln a<0,即f

8、(-ln a)<0. 又f(-2)=ae-4+(a-2)e-2+2>-2e-2+2>0, 故f(x)在(-∞,-ln a)有一個(gè)零點(diǎn). 設(shè)正整數(shù)n0滿足n0>ln, 則f(n0)=e(ae+a-2)-n0>e-n0>2-n0>0. 由于ln>-ln a, 因此f(x)在(-ln a,+∞)有一個(gè)零點(diǎn). 綜上,a的取值范圍為(0,1). [規(guī)律方法] 利用導(dǎo)數(shù)研究函數(shù)零點(diǎn)的兩種常用方法 (1)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,借助零點(diǎn)存在性定理判斷;或用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,再用單調(diào)性和極值定位函數(shù)圖像求解零點(diǎn)問題. (2)將零點(diǎn)問題轉(zhuǎn)化為函數(shù)圖像的交點(diǎn)問題,利用數(shù)形結(jié)合來解決.

9、 [跟蹤訓(xùn)練] (20xx·武漢調(diào)研)已知f(x)=ln x-x3+2ex2-ax,a∈R,其中e為自然對(duì)數(shù)的底數(shù). (1)若f(x)在x=e處的切線的斜率為e2,求a; (2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍. [解] (1)f′(x)=-3x2+4ex-a, f′(e)=+e2-a=e2,∴a=. (2)由ln x-x3+2ex2-ax=0,得-x2+2ex=a. 記F(x)=-x2+2ex, 則F′(x)=-2(x-e). x∈(e,+∞),F(xiàn)′(x)<0,F(xiàn)(x)單調(diào)遞減. x∈(0,e),F(xiàn)′(x)>0,F(xiàn)(x)單調(diào)遞增, ∴F(x)max=F(e)=+e2

10、, 而x→0時(shí),F(xiàn)(x)→-∞, x→+∞時(shí),F(xiàn)(x)→-∞.故a<+e2. 利用導(dǎo)數(shù)研究不等式問題(答題模板) 導(dǎo)數(shù)在不等式中的應(yīng)用是每年高考的必考內(nèi)容,且以解答題的形式考查,難度較大,屬中高檔題,突出轉(zhuǎn)化思想、函數(shù)思想的考查.常見的命題角度有:(1)證明不等式;(2)由不等式恒成立求參數(shù)范圍問題;(3)不等式恒成立、能成立問題.  (本小題滿分12分)(20xx·全國(guó)卷Ⅱ)設(shè)函數(shù)f(x)=(1-x2)ex. (1)討論f(x)的單調(diào)性; (2)當(dāng)x≥0時(shí),f(x)≤ax+1,求a的取值范圍. [規(guī)范解答] (1)f′(x)=(1-2x-x2)ex. 令f′(x)=

11、0得x=-1-或x=-1+. 2分 當(dāng)x∈(-∞,-1-)時(shí),f′(x)<0; 當(dāng)x∈(-1-,-1+)時(shí),f′(x)>0; 當(dāng)x∈(-1+,+∞)時(shí),f′(x)<0. 4分 所以f(x)在(-∞,-1-),(-1+,+∞)單調(diào)遞減,在(-1-,-1+)單調(diào)遞增. 5分 (2)f(x)=(1+x)(1-x)ex. 當(dāng)a≥1時(shí),設(shè)函數(shù)h(x)=(1-x)ex,h′(x)=-xex<0(x>0),因此h(x)在[0,+∞)單調(diào)遞減.而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1. 8分 當(dāng)0

12、-1>0(x>0),所以g(x)在[0,+∞)單調(diào)遞增,而g(0)=0,故ex≥x+1. 當(dāng)0(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=,則x0∈(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)>ax0+1. 10分 當(dāng)a≤0時(shí),取x0=,則x0∈(0,1),f(x0)>(1-x0)(1+x0)2=1≥ax0+1. 11分 綜上,a的取值范圍是[1,+∞). 12分 [閱卷者說] 易錯(cuò)點(diǎn) 防范措施 函數(shù)h(x)與函數(shù)g(x)的構(gòu)造 認(rèn)真分析不等式的結(jié)構(gòu)特征,通過構(gòu)造h(x),利用不等式

13、的性質(zhì),證明命題成立,通過構(gòu)造g(x),為舉反例說明命題不成立創(chuàng)造了條件 [規(guī)律方法] 1.求單調(diào)區(qū)間的一般步驟 (1)求定義域. (2)求f′(x),令f′(x)>0,求出f(x)的增區(qū)間;令f′(x)<0,求出f(x)的減區(qū)間. (3)寫出結(jié)論. 2.恒成立問題的三種解法 (1)分離參數(shù),化為最值問題求解. (2)構(gòu)造函數(shù),分類討論,如f(x)≥g(x),即F(x)=f(x)-g(x),求F(x)min≥0. (3)轉(zhuǎn)變主元,選取適當(dāng)?shù)闹髟?,可使問題簡(jiǎn)化. [跟蹤訓(xùn)練] 設(shè)函數(shù)f(x)=e2x-aln x. (1)討論f(x)的導(dǎo)函數(shù)f′(x)零點(diǎn)的個(gè)數(shù); (2)

14、證明:當(dāng)a>0時(shí),f(x)≥2a+aln. 【導(dǎo)學(xué)號(hào):79140097】 [解] (1)f(x)的定義域?yàn)?0,+∞),f′(x)=2e2x-(x>0). 當(dāng)a≤0時(shí),f′(x)>0,f′(x)沒有零點(diǎn); 當(dāng)a>0時(shí),設(shè)u(x)=e2x,v(x)=-, 因?yàn)閡(x)=e2x在(0,+∞)上單調(diào)遞增,v(x)=-在(0,+∞)上單調(diào)遞增, 所以f′(x)在(0,+∞)上單調(diào)遞增. 又f′(a)>0,假設(shè)存在b滿足00時(shí),f′(x)存在唯一零點(diǎn). (2)證明:由(1),可設(shè)f′(x)在(0,+∞)上的唯一零點(diǎn)為x0,當(dāng)x∈(0,x0)時(shí),f′(x)<0; 當(dāng)x∈(x0,+∞)時(shí),f′(x)>0. 故f(x)在(0,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增,所以當(dāng)x=x0時(shí),f(x)取得最小值,最小值為f(x0). 由于2e-=0,所以f(x0)=+2ax0+aln≥2a+aln . 故當(dāng)a>0時(shí),f(x)≥2a+aln .

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲