《新編高考數(shù)學(xué)文科一輪總復(fù)習(xí) 第8篇 第4節(jié) 雙曲線》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)文科一輪總復(fù)習(xí) 第8篇 第4節(jié) 雙曲線(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新編高考數(shù)學(xué)復(fù)習(xí)資料
第八篇 第4節(jié)
一、選擇題
1.設(shè)P是雙曲線-=1上一點(diǎn),F(xiàn)1,F(xiàn)2分別是雙曲線左右兩個(gè)焦點(diǎn),若|PF1|=9,則|PF2|等于( )
A.1 B.17
C.1或17 D.以上答案均不對(duì)
解析:由雙曲線定義||PF1|-|PF2||=8,
又|PF1|=9,
∴|PF2|=1或17,但應(yīng)注意雙曲線的右頂點(diǎn)到右焦點(diǎn)距離最小為c-a=6-4=2>1,
∴|PF2|=17.
故選B.
答案:B
2.(2013年高考湖北卷)已知0<θ<,則雙曲線C1:-=1與C2:-=1的( )
A.實(shí)軸長(zhǎng)相等 B.虛軸長(zhǎng)相等
C.離
2、心率相等 D.焦距相等
解析:雙曲線C1的半焦距c1==1,雙曲線C2的半焦距c2==1,故選D.
答案:D
3.(2012年高考湖南卷)已知雙曲線C:-=1的焦距為10,點(diǎn)P(2,1)在C的漸近線上,則C的方程為( )
A.-=1 B.-=1
C.-=1 D.-=1
解析:由焦距為10,知2c=10,c=5.
將P(2,1)代入y=x得a=2b.
a2+b2=c2,5b2=25,b2=5,a2=4b2=20,
所以方程為-=1.故選A.
答案:A
4.(2014皖南八校聯(lián)考)設(shè)F1,F(xiàn)2是雙曲線x2-=1的兩個(gè)焦點(diǎn),P是雙曲線上的一點(diǎn),且3|PF1|=4|PF2
3、|,則△PF1F2的面積等于( )
A.4 B.8
C.24 D.48
解析:∵3|PF1|=4|PF2|, ①
∴|PF1|>|PF2|,
由雙曲線的定義得:
|PF1|-|PF2|=2a=2, ②
聯(lián)立①、②解得|PF2|=6,|PF1|=8,
又|F1F2|=2c=2=10,
∴|F1F2|2=|PF1|2+|PF2|2,
∴△PF1F2為直角三角形且∠P=90°,
∴S△PF1F2=|PF1|·|PF2|=24.選C.
答案:C
5.設(shè)橢圓C1的離心率為,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26,若曲線C2上的點(diǎn)到橢圓C
4、1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線C2的標(biāo)準(zhǔn)方程為( )
A.-=1 B.-=1
C.-=1 D.-=1
解析:在橢圓C1中,因?yàn)閑=,2a=26,
即a=13,所以橢圓的焦距2c=10,
則橢圓兩焦點(diǎn)為(-5,0),(5,0),
根據(jù)題意,可知曲線C2為雙曲線,
根據(jù)雙曲線的定義可知,
雙曲線C2中的2a2=8,
焦距與橢圓的焦距相同,
即2c2=10,
可知b2=3,
所以雙曲線的標(biāo)準(zhǔn)方程為-=1.故選A.
答案:A
6.(2014福州八中模擬)若雙曲線-=1漸近線上的一個(gè)動(dòng)點(diǎn)P總在平面區(qū)域(x-m)2+y2≥16內(nèi),則實(shí)數(shù)m的取值范圍是( )
5、
A.[-3,3] B.(-∞,-3]∪[3,+∞)
C.[-5,5] D.(-∞,-5]∪[5,+∞)
解析:因?yàn)殡p曲線-=1漸近線4x±3y=0上的一個(gè)動(dòng)點(diǎn)P總在平面區(qū)域(x-m)2+y2≥16內(nèi),即直線與圓相離或相切,所以d=≥4,解得m≥5或m≤-5,故實(shí)數(shù)m的取值范圍是(-∞,-5]∪[5,+∞).選D.
答案:D
二、填空題
7.(2013年高考遼寧卷)已知F為雙曲線C:-=1的左焦點(diǎn),P,Q為C上的點(diǎn).若PQ的長(zhǎng)等于虛軸長(zhǎng)的2倍,點(diǎn)A(5,0)在線段PQ上,則△PQF的周長(zhǎng)為_(kāi)_______.
解析:由題知,雙曲線中a=3,b=4,c=5,
則|PQ|=1
6、6,
又因?yàn)閨PF|-|PA|=6,
|QF|-|QA|=6,
所以|PF|+|QF|-|PQ|=12,
|PF|+|QF|=28,
則△PQF的周長(zhǎng)為44.
答案:44
8.已知雙曲線C:-=1(a>0,b>0)的離心率e=2,且它的一個(gè)頂點(diǎn)到較近焦點(diǎn)的距離為1,則雙曲線C的方程為_(kāi)_______.
解析:雙曲線中,頂點(diǎn)與較近焦點(diǎn)距離為c-a=1,
又e==2,兩式聯(lián)立得a=1,c=2,
∴b2=c2-a2=4-1=3,∴方程為x2-=1.
答案:x2-=1
9.(2014合肥市第三次質(zhì)檢)已知點(diǎn)P是雙曲線-=1(a>0,b>0)和圓x2+y2=a2+b2的一個(gè)交點(diǎn),
7、F1,F(xiàn)2是該雙曲線的兩個(gè)焦點(diǎn),∠PF2F1=2∠PF1F2,則該雙曲線的離心率為_(kāi)_______.
解析:依題意得,線段F1F2是圓x2+y2=a2+b2的一條直徑,
故∠F1PF2=90°,∠PF1F2=30°,
設(shè)|PF2|=m,
則有|F1F2|=2m,|PF1|=m,
該雙曲線的離心率等于
==+1.
答案:+1
10.(2013年高考湖南卷)設(shè)F1,F(xiàn)2是雙曲線C:-=1(a>0,b>0)的兩個(gè)焦點(diǎn).若在C上存在一點(diǎn)P,使PF1⊥PF2,且∠PF1F2=30°,則C的離心率為_(kāi)_______.
解析:設(shè)點(diǎn)P在雙曲線右支上,
由題意,在Rt△F1PF2中,
|F
8、1F2|=2c,∠PF1F2=30°,
得|PF2|=c,|PF1|=c,
根據(jù)雙曲線的定義:
|PF1|-|PF2|=2a,(-1)c=2a,
e===+1.
答案:+1
三、解答題
11.已知雙曲線x2-=1,過(guò)點(diǎn)P(1,1)能否作一條直線l,與雙曲線交于A、B兩點(diǎn),且點(diǎn)P是線段AB的中點(diǎn)?
解:法一 設(shè)點(diǎn)A(x1,y1),B(x2,y2)在雙曲線上,
且線段AB的中點(diǎn)為(x0,y0),
若直線l的斜率不存在,顯然不符合題意.
設(shè)經(jīng)過(guò)點(diǎn)P的直線l的方程為y-1=k(x-1),
即y=kx+1-k.
由
得(2-k2)x2-2k(1-k)x-(1-k)2-2
=
9、0(2-k2≠0). ①
∴x0==.
由題意,得=1,
解得k=2.
當(dāng)k=2時(shí),方程①成為2x2-4x+3=0.
Δ=16-24=-8<0,方程①?zèng)]有實(shí)數(shù)解.
∴不能作一條直線l與雙曲線交于A,B兩點(diǎn),且點(diǎn)P(1,1)是線段AB的中點(diǎn).
法二 設(shè)A(x1,y1),B(x2,y2),
若直線l的斜率不存在,
即x1=x2不符合題意,
所以由題得x-=1,x-=1,
兩式相減得(x1+x2)(x1-x2)-=0,
即2-=0,
即直線l斜率k=2,
得直線l方程y-1=2(x-1),
即y=2x-1,
聯(lián)立
得2x2-4x+3=0,
Δ=16-24=-8<
10、0,
即直線y=2x-1與雙曲線無(wú)交點(diǎn),即所求直線不合題意,
所以過(guò)點(diǎn)P(1,1)的直線l不存在.
12.(2014南京質(zhì)檢)中心在原點(diǎn),焦點(diǎn)在x軸上的一橢圓與一雙曲線有共同的焦點(diǎn)F1,F(xiàn)2,且|F1F2|=2,橢圓的長(zhǎng)半軸長(zhǎng)與雙曲線實(shí)半軸長(zhǎng)之差為4,離心率之比為3∶7.
(1)求這兩曲線方程;
(2)若P為這兩曲線的一個(gè)交點(diǎn),求cos∠F1PF2的值.
解:(1)由已知c=,
設(shè)橢圓長(zhǎng)、短半軸長(zhǎng)分別為a、b,
雙曲線實(shí)半軸、虛半軸長(zhǎng)分別為m、n,
則
解得a=7,m=3.∴b=6,n=2.
∴橢圓方程為+=1,
雙曲線方程為-=1.
(2)不妨設(shè)F1、F2分別為左、右焦點(diǎn),P是第一象限的一個(gè)交點(diǎn),
則|PF1|+|PF2|=14,
|PF1|-|PF2|=6,
∴|PF1|=10,|PF2|=4.
又|F1F2|=2,
∴cos∠F1PF2=
==.