《新版高三數(shù)學(xué) 第18練 用導(dǎo)數(shù)研究函數(shù)的單調(diào)性練習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版高三數(shù)學(xué) 第18練 用導(dǎo)數(shù)研究函數(shù)的單調(diào)性練習(xí)(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
1
2、 1
第18練 用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
訓(xùn)練目標(biāo)
(1)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;(2)函數(shù)單調(diào)性的應(yīng)用.
訓(xùn)練題型
(1)求函數(shù)單調(diào)區(qū)間;(2)利用函數(shù)單調(diào)性求參數(shù)值;(3)利用函數(shù)單調(diào)性比較函數(shù)值大?。?
解題策略
(1)函數(shù)的單調(diào)性可通過解不等式f′(x)>0或f′(x)<0判斷;(2)若f(x)在區(qū)間D上是增函數(shù),則f′(x)≥0在D上恒成立;(3)已知條件中含f
3、(x)的不等式,可構(gòu)造函數(shù),利用單調(diào)性求解.
一、選擇題
1.函數(shù)f(x)=lnx-x2的單調(diào)減區(qū)間是( )
A.(-∞,] B.(0,]
C.[1,+∞) D.[,+∞)
2.已知函數(shù)y=f(x)的圖象是下列四個(gè)圖象之一,且其導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則該函數(shù)的圖象是( )
3.“a>1”是“函數(shù)f(x)=ax+cosx在R上單調(diào)遞增”的( )
A.充分不必要條件 B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件
4.已知a≥0,函數(shù)f(x)=(x2-2ax)ex,若f(x)在[-1,1]上是單調(diào)減函數(shù),則a的取值范圍是( )
4、
A. B.
C. D.
5.(20xx·臨沂月考)已知f(x)是定義在(0,+∞)上的非負(fù)可導(dǎo)函數(shù),且滿足xf′(x)+f(x)≤0,對(duì)任意的00),
(1)若函數(shù)f(x)的單調(diào)遞減區(qū)間是(0,4),則實(shí)數(shù)k的值為____________;
(2)若在(0,4)上為減函數(shù),則實(shí)數(shù)k的取值范圍是____________.
7.已知函數(shù)y=-x3+bx2-(2b+
5、3)x+2-b在R上不是單調(diào)減函數(shù),則b的取值范圍是________________.
8.(20xx·蘭州一模)若函數(shù)f(x)=x2-ex-ax在R上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)a的取值范圍是______________________.
9.已知函數(shù)f(x)=x3+x2+ax,若g(x)=,對(duì)任意x1∈[,2],存在x2∈[,2],使f′(x1)≤g(x2)成立,則實(shí)數(shù)a的取值范圍是______________.
三、解答題
10.已知函數(shù)f(x)=lnx-,g(x)=f(x)+ax-6ln x,其中a∈R.
(1)當(dāng)a=1時(shí),判斷函數(shù)f(x)的單調(diào)性;
(2)若g(x)在其定義域
6、內(nèi)為增函數(shù),求正實(shí)數(shù)a的取值范圍.
答案精析
1.D [由題意知,函數(shù)f(x)=lnx-x2的定義域?yàn)?0,+∞),求導(dǎo)可得f′(x)=-2x=,令f′(x)=≤0,可得x≥.故選D.]
2.B [在(-1,0)上,f′(x)單調(diào)遞增,所以f(x)圖象的切線斜率呈遞增趨勢(shì);在(0,1)上,f′(x)單調(diào)遞減,所以f(x)圖象的切線斜率呈遞減趨勢(shì),故選B.]
3.A [若函數(shù)f(x)=ax+cosx在R上單調(diào)遞增,則f′(x)=a-sin x≥0在R上恒成立,
∴a≥sinx,∵-1≤sin x≤1,∴a≥1,則“a>1”是“函數(shù)f(x)=ax+cosx在
7、R上單調(diào)遞增”的充分不必要條件,故選A.]
4.C [f′(x)=(2x-2a)ex+(x2-2ax)ex=[x2+(2-2a)x-2a]ex,由題意知當(dāng)x∈[-1,1]時(shí),f′(x)≤0恒成立,即x2+(2-2a)x-2a≤0恒成立.
令g(x)=x2+(2-2a)x-2a,
則有
即
解得a≥.]
5.A [因?yàn)閤f′(x)≤-f(x),f(x)≥0,所以′=≤≤0,
則函數(shù)在(0,+∞)上單調(diào)遞減.由于0
8、x)=3kx2+6(k-1)x,由題意知f′(4)≤0,解得k≤.又k>0,故03.
8.(-∞,2ln 2-2]
解析 因?yàn)閒(x)=x2-ex-ax,所以f′(x)=2x-ex-a,
因?yàn)楹瘮?shù)f(x)=x2-ex-ax在R上存在單調(diào)遞增區(qū)間,
所以f′(x)=2x-ex-a≥0,
即a≤2x-ex有解,設(shè)g(x)
9、=2x-ex,則g′(x)=2-ex,令g′(x)=0,
解得x=ln 2,則當(dāng)x0,g(x)單調(diào)遞增,
當(dāng)x>ln 2時(shí),g′(x)<0,g(x)單調(diào)遞減,
所以當(dāng)x=ln 2時(shí),g(x)取得最大值,g(x)max=g(ln 2)=2ln 2-2,
所以a≤2ln 2-2.
9.(-∞,-8]
解析 求導(dǎo)可得f′(x)=x2+2x+a=(x+1)2+a-1?f′(x)在[,2]上是增函數(shù)?f′(x)max=f′(2)=8+a,由g(x)=在[,2]上是減函數(shù)?g(x)max=g()=,又原命題等價(jià)于f′(x)max≤g(x)max?8+a≤?a∈(-∞,-8].
10.解 (1)由f(x)=lnx-得定義域?yàn)?0,+∞),f′(x)=,
當(dāng)a=1時(shí),f′(x)=>0在(0,+∞)上恒成立,
所以函數(shù)f(x)在(0,+∞)上單調(diào)遞增.
(2)由已知得,g′(x)=,
因?yàn)間(x)在其定義域內(nèi)為增函數(shù),
所以?x∈(0,+∞),g′(x)≥0,
即ax2-5x+a≥0,即a≥,
而≤=,當(dāng)且僅當(dāng)x=1時(shí),等號(hào)成立,所以a≥.