新版【創(chuàng)新方案】高考數(shù)學(xué)理一輪突破熱點題型:第2章 第3節(jié) 函數(shù)的奇偶性與周期性
《新版【創(chuàng)新方案】高考數(shù)學(xué)理一輪突破熱點題型:第2章 第3節(jié) 函數(shù)的奇偶性與周期性》由會員分享,可在線閱讀,更多相關(guān)《新版【創(chuàng)新方案】高考數(shù)學(xué)理一輪突破熱點題型:第2章 第3節(jié) 函數(shù)的奇偶性與周期性(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 1
2、 1 第三節(jié) 函數(shù)的奇偶性與周期性 考點一 函數(shù)奇偶性的判斷 [例1] (1)若函數(shù)f(x)=3x+3-x與g(x)=3x-3-x的定義域均為R,則( ) A.f(x)與g(x)均為偶函數(shù) B.f(x)為偶函數(shù),g(x)為奇函數(shù) C.f(x)與g(x)均為奇函數(shù) D.f(x)為奇函數(shù),g(x)為偶函數(shù) (2)下列函數(shù): ①
3、f(x)=+;②f(x)=x3-x; ③f(x)=ln(x+);④f(x)=ln. 其中奇函數(shù)的個數(shù)是( ) A.1 B.2 C.3 D.4 [自主解答] (1)由f(-x)=3-x+3x=f(x)可知f(x)為偶函數(shù),由g(-x)=3-x-3x=-(3x- 3-x)=-g(x)可知g(x)為奇函數(shù). (2)①f(x)=+的定義域為{-1,1},又f(-x)=±f(x)=0, 則f(x)=+既是奇函數(shù)又是偶函數(shù); ②f(x)=x3-x的定義域為R,又f(-x)=(-x)3-(-x)=-(x3-x)=-f(x), 則f(x)=x3-x是奇函數(shù); ③由
4、x+>x+|x|≥0知f(x)=ln(x+)的定義域為R, 又f(-x)=ln (-x+)=ln=-ln(x+)=-f(x),則f(x)=ln(x+)為奇函數(shù); ④由>0,得-1<x<1,即f(x)=ln的定義域為(-1,1), 又f(-x)=ln=ln-1=-ln=-f(x),則f(x)為奇函數(shù). [答案] (1)B (2)D 【互動探究】 若將本例(2)中①對應(yīng)的函數(shù)改為“f(x)=+”,試判斷其奇偶性. 解:∵函數(shù)f(x)=+的定義域為{1},不關(guān)于原點對稱, ∴函數(shù)f(x)既不是奇函數(shù),也不是偶函數(shù). 【方法規(guī)律】 判斷函數(shù)奇偶性的方法 (1)判斷函數(shù)的
5、奇偶性,首先看函數(shù)的定義域是否關(guān)于原點對稱;在定義域關(guān)于原點對稱的條件下,再化簡解析式,根據(jù)f(-x)與f(x)的關(guān)系作出判斷. (2)分段函數(shù)指在定義域的不同子集有不同對應(yīng)關(guān)系的函數(shù),分段函數(shù)奇偶性的判斷,要分別從x>0或x<0來尋找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有當(dāng)對稱的兩個區(qū)間上滿足相同關(guān)系時,分段函數(shù)才具有確定的奇偶性. 判斷下列各函數(shù)的奇偶性: (1)f(x)=(x+1) ;(2)f(x)=; (3)f(x)= 解:(1)由得,定義域為(-1,1],關(guān)于原點不對稱,故f(x)為非奇非偶函數(shù). (2)由得,定義域為(-1,0)∪(0,1).
6、∴x-2<0,∴|x-2|-2=-x,∴f(x)=.又∵f(-x)==-=-f(x),∴函數(shù)f(x)為奇函數(shù). (3)顯然函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),關(guān)于原點對稱. ∵當(dāng)x<0時,-x>0,則f(-x)=-(-x)2-x=-x2-x=-f(x); 當(dāng)x>0時,-x<0,則f(-x)=(-x)2-x=x2-x=-f(x); 綜上可知,對于定義域內(nèi)的任意x,總有f(-x)=-f(x)成立,∴函數(shù)f(x)為奇函數(shù). 考點二 函數(shù)奇偶性的應(yīng)用 [例2] (1)(20xx·湖南高考)已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(-1)+g(1)=2,f(1
7、)+g(-1)=4,則g(1)等于( ) A.4 B.3 C.2 D.1 (2)(20xx·重慶高考)已知函數(shù)f(x)=ax3+bsin x+4(a,b∈R),f(lg(log210))=5,則f(lg(lg 2))=( ) A.-5 B.-1 C.3 D.4 (3)已知函數(shù)y=f(x)是R上的偶函數(shù),且在(-∞,0]上是減函數(shù),若f(a)≥f(2),則實數(shù)a的取值范圍是________. [自主解答] (1)由已知得f(-1)=-f(1),g(-1)=g(1),則有解得g(1)=3. (2)∵f(x)=ax3+
8、bsin x+4,① ∴f(-x)=a(-x)3+bsin(-x)+4, 即f(-x)=-ax3-bsin x+4,② ①+②得f(x)+f(-x)=8,③ 又∵lg(log210)=lg=lg(lg 2)-1=-lg(lg 2),∴f(lg(log2 10))=f(-lg(lg 2))=5, 又由③式知f(-lg(lg 2))+f(lg(lg 2))=8,∴5+f(lg(lg 2))=8,∴f(lg(lg 2))=3. (3)∵y=f(x)是R上的偶函數(shù),且在(-∞,0]上是減函數(shù),∴函數(shù)y=f(x)在[0,+∞)上是增函數(shù).∴當(dāng)a>0時,由f(a)≥f(2)可得a≥2,當(dāng)a<0
9、時,由f(a)≥f(2)=f(-2),可得a≤-2.所以實數(shù)a的取值范圍是(-∞,-2]∪[2,+∞). [答案] (1)B (2)C (3)(-∞,-2]∪[2,+∞) 【互動探究】 若本例(3)中的f(x)為奇函數(shù),求實數(shù)a的取值范圍. 解:因為f(x)為奇函數(shù),且在(-∞,0]上是減函數(shù),所以f(x)在R上為減函數(shù).又f(a)≥f(2),故a≤2,即實數(shù)a的取值范圍為(-∞,2]. 【方法規(guī)律】 與函數(shù)奇偶性有關(guān)的問題及解決方法 (1)已知函數(shù)的奇偶性,求函數(shù)值 將待求值利用奇偶性轉(zhuǎn)化為已知區(qū)間上的函數(shù)值求解. (2)已知函數(shù)的奇偶性求解析式 將待求區(qū)間上的自變
10、量,轉(zhuǎn)化到已知區(qū)間上,再利用奇偶性求出,或充分利用奇偶性構(gòu)造關(guān)于f(x)的方程(組),從而得到f(x)的解析式. (3)已知函數(shù)的奇偶性,求函數(shù)解析式中參數(shù)的值 常常利用待定系數(shù)法:利用f(x)±f(-x)=0得到關(guān)于待求參數(shù)的恒等式,由系數(shù)的對等性得參數(shù)的值或方程求解. (4)應(yīng)用奇偶性畫圖象和判斷單調(diào)性 利用奇偶性可畫出另一對稱區(qū)間上的圖象及判斷另一區(qū)間上的單調(diào)性. 1.若定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=ex,則g(x)=( ) A.ex-e-x B.(ex+e-x) C.(e-x-ex) D.(e
11、x-e-x) 解析:選D ∵f(x)+g(x)=ex,① ∴f(-x)+g(-x)=e-x. 又∵f(-x)=f(x),g(-x)=-g(x),∴f(x)-g(x)=e-x.② 由①②得解得g(x)=(ex-e-x). 2.(20xx·杭州模擬)設(shè)f(x)為定義在R上的奇函數(shù).當(dāng)x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(-1)=( ) A.-3 B.-1 C.1 D.3 解析:選A 因為f(x)為定義在R上的奇函數(shù),所以f(0)=20+2×0+b=0,解得b= -1.所以當(dāng)x≥0時,f(x)=2x+2x-1,所以f(-1)=-
12、f(1)=-(21+2×1-1)=-3. 考點三 函數(shù)的周期性 [例3] 定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)-3≤x<-1時,f(x)=-(x+2)2;當(dāng)-1≤x<3時,f(x)=x.則f(1)+f(2)+f(3)+…+f(2 012)=( ) A.335 B.338 C.1 678 D.2 012 [自主解答] 由f(x+6)=f(x)可知,函數(shù)f(x)的周期為6,所以f(-3)=f(3)=-1,f(-2)=f(4)=0,f(-1)=f(5)=-1,f(0)=f(6)=0,f(1)=1,f(2)=2,所以在一個周期內(nèi)有f(1)+f(2)+…
13、+f(6)=1+2-1+0-1+0=1,所以f(1)+f(2)+…+f (2 012)=f(1)+f(2)+335×1=1+2+335=338. [答案] B 【方法規(guī)律】 函數(shù)周期性的判定 判斷函數(shù)的周期只需證明f(x+T)=f(x)(T≠0)便可證明函數(shù)是周期函數(shù),且周期為T,函數(shù)的周期性常與函數(shù)的其他性質(zhì)綜合命題,是高考考查的重點問題. 設(shè)f(x)是定義在R上且周期為2的函數(shù),在區(qū)間[-1,1]上,f(x)=其中a,b∈R.若f=f,則a+3b的值為________. 解析:因為f(x)是定義在R上且周期為2的函數(shù),所以f=f,且f(-1)=f(1),故f=f,所以=
14、-a+1,即3a+2b=-2.① 由f(-1)=f(1),得-a+1=,即b=-2a.② 由①②得a=2,b=-4,從而a+3b=-10. 答案:-10 高頻考點 考點四 函數(shù)性質(zhì)的綜合應(yīng)用 1.高考常將函數(shù)的單調(diào)性、奇偶性及周期性相結(jié)合命題,以選擇題或填空題的形式考查,難度稍大,為中高檔題. 2.高考對函數(shù)性質(zhì)綜合應(yīng)用的考查主要有以下幾個命題角度: (1)單調(diào)性與奇偶性相結(jié)合; (2)周期性與奇偶性相結(jié)合; (3)單調(diào)性、奇偶性與周期性相結(jié)合. [例4] (1)(20xx·北京高考)下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( )
15、A.y= B.y=e-x C.y=-x2+1 D.y=lg|x| (2)(20xx·南昌模擬)已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則( ) A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25) C.f(11)<f(80)<f(-25) D.f(-25)<f(80)<f(11) (3)(20xx·浙江高考)設(shè)函數(shù)f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[0,1]時,f(x)=x+1,則f=________. [自主解答] (1)A中y=是奇函數(shù),A不
16、正確;B中y=e-x=x是非奇非偶函數(shù),B不正確;C中y=-x2+1是偶函數(shù)且在(0,+∞)上是單調(diào)遞減的,C正確;D中y=lg|x|在(0,+∞)上是增函數(shù),D不正確.故選C. (2)∵f(x)滿足f(x-4)=-f(x), ∴f(x-8)=f(x),∴函數(shù)f(x)是以8為周期的周期函數(shù),則f(-25)=f(-1),f(80)=f(0),f(11)=f(3).由f(x)是定義在R上的奇函數(shù),且滿足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1).∵f(x)在區(qū)間[0,2]上是增函數(shù),f(x)在R上是奇函數(shù), ∴f(x)在區(qū)間[-2,2]上是增函數(shù),∴f(-1)<
17、f(0)<f(1),即f(-25)<f(80)<f(11). (3)f=f=f=+1=. [答案] (1)C (2)D (3) 函數(shù)性質(zhì)綜合應(yīng)用問題的常見類型及解題策略 (1)函數(shù)單調(diào)性與奇偶性的綜合.注意函數(shù)單調(diào)性及奇偶性的定義,以及奇、偶函數(shù)圖象的對稱性. (2)周期性與奇偶性的綜合.此類問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解. (3)單調(diào)性、奇偶性與周期性的綜合.解決此類問題通常先利用周期性轉(zhuǎn)化自變量所在的區(qū)間,然后利用奇偶性和單調(diào)性求解. 1.函數(shù)f(x)是周期為4的偶函數(shù),當(dāng)x∈[0,2]時,f(
18、x)=x-1,則不等式xf(x)>0在[-1,3]上的解集為( ) A.(1,3) B.(-1,1) C.(-1,0)∪(1,3) D.(-1,0)∪(0,1) 解析:選C f(x)的圖象如圖. 當(dāng)x∈(-1,0)時,由xf(x)>0得x∈(-1,0);當(dāng)x∈(0,1)時,由xf(x)<0得x∈?; 當(dāng)x∈(1,3)時,由xf(x)>0得x∈(1,3).故x∈(-1,0)∪(1,3). 2.(20xx·濰坊模擬)已知函數(shù)f(x+1)是定義在R上的奇函數(shù),若對于任意給定的不相等實數(shù)x1、x2,不等式(x1-x2)·[f(x1)-f
19、(x2)]<0恒成立,則不等式f(1-x)<0的解集為________. 解析:∵f(x+1)是定義在R上的奇函數(shù),∴f(-x+1)=-f(x+1),令x=0,則f(1)=0.又∵(x1-x2)·[f(x1)-f(x2)]<0,∴f(x)在R上單調(diào)遞減,∵f(1-x)<0=f(1),∴1-x>1,解得x<0,∴不等式f(1-x)<0的解集為(-∞,0). 答案:(-∞,0) 3.(20xx·麗水模擬)已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù).若方程f(x)=m(m>0)在區(qū)間[-8,8]上有四個不同的根x1,x2,x3,x4,則x1+x2+
20、x3+x4=________. 解析:∵f(x)為奇函數(shù)并且f(x-4)=-f(x).∴f(x-4)=-f(4-x)=-f(x),即f(4-x)=f(x),且f(x-8)=-f(x-4)=f(x),即y=f(x)的圖象關(guān)于x=2對稱,并且是周期為8的周期函數(shù). ∵f(x)在[0,2]上是增函數(shù),∴f(x)在[-2,2]上是增函數(shù),在[2,6]上為減函數(shù),據(jù)此可畫出y=f(x)的圖象, 其圖象也關(guān)于x=-6對稱,∴x1+x2=-12,x3+x4=4,∴x1+x2+x3+x4=-8. 答案:-8 ————————————[課堂歸納——通法領(lǐng)悟]———————————————— 1
21、條規(guī)律——奇、偶函數(shù)定義域的特點 奇、偶函數(shù)的定義域關(guān)于原點對稱. 函數(shù)的定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要不充分條件. 2個性質(zhì)——奇、偶函數(shù)的兩個性質(zhì) (1)若奇函數(shù)f(x)在x=0處有定義,則f(0)=0. (2)設(shè)f(x),g(x)的定義域分別是D1,D2,那么在它們的公共定義域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇. 3條結(jié)論——與周期性和對稱性有關(guān)的三條結(jié)論 (1)若對于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),則y=f(x)的圖象關(guān)于直線x=a對稱. (2)若對于R上的任意x都有f(2a-x)=f(x),且f(2b-x)=f(x)(其中a<b),則y=f(x)是以2(b-a)為周期的周期函數(shù). (3)若對于定義域內(nèi)的任意x都有f(x+a)=f(x+b)(a≠b),則函數(shù)f(x)是周期函數(shù),其中一個周期為T=2|a-b|.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際人力資源管理研討從明棋電腦探討課件
- 國文詩歌多媒體教學(xué)課件
- 古詩詞中愁的意象課件
- 十依財政經(jīng)費所產(chǎn)生的弱勢族群課件
- 六條法律的新解釋發(fā)怒奸淫休妻課件
- 六書理論-大學(xué)古代漢語復(fù)習(xí)資料課件
- 7足太陽膀胱經(jīng)2課件
- 莫內(nèi)和他的朋友們一劇描寫印象派畫家的故事課件
- 海上貨物運輸保險講義ppt課件
- 資訊技術(shù)革命課件
- 北師大版必修二§213兩條直線的位置關(guān)系
- 專案采購計劃之準(zhǔn)則建立課件
- 常見惡性腫瘤的早期診斷和治療對策課件
- 干部管理職責(zé)與執(zhí)行技巧課件
- 將地方圖案插入此投影片課件