新教材【人教B版】20版高考必修一檢測(cè)訓(xùn)練:?jiǎn)卧仞B(yǎng)評(píng)價(jià)三數(shù)學(xué) Word版含解析
《新教材【人教B版】20版高考必修一檢測(cè)訓(xùn)練:?jiǎn)卧仞B(yǎng)評(píng)價(jià)三數(shù)學(xué) Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新教材【人教B版】20版高考必修一檢測(cè)訓(xùn)練:?jiǎn)卧仞B(yǎng)評(píng)價(jià)三數(shù)學(xué) Word版含解析(13頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 溫馨提示: 此套題為Word版,請(qǐng)按住Ctrl,滑動(dòng)鼠標(biāo)滾軸,調(diào)節(jié)合適的觀看比例,答案解析附后。關(guān)閉Word文檔返回原板塊。 單元素養(yǎng)評(píng)價(jià)(三) (第三章) (120分鐘 150分) 一、單項(xiàng)選擇題(本大題共10小題,每小題4分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的) 1.下列函數(shù):(1)y=;(2)y=;(3)y=1(-1≤x<1).其中與函數(shù)y=1是同一個(gè)函數(shù)的個(gè)數(shù)是 ( ) A.3 B.2 C.1 D.0 【解析】選D.(1)要求x≠0,與函數(shù)y=1的定義域不同,兩函數(shù)不是同一個(gè)函數(shù);(2)雖然化簡(jiǎn)后為y=1,但要求t
2、≠-1,即定義域不同,不是同一個(gè)函數(shù);(3)顯然定義域不同,故不是同一個(gè)函數(shù). 2.f(x)是定義在R上的奇函數(shù),f(-3)=2,則下列各點(diǎn)在函數(shù)f(x)圖像上的 是 ( ) A.(3,-2) B.(3,2) C.(-3,-2) D.(2,-3) 【解析】選A.因?yàn)閒(x)是奇函數(shù),所以f(-3)=-f(3). 又f(-3)=2,所以f(3)=-2,所以點(diǎn)(3,-2)在函數(shù)f(x)的圖像上. 3.下列函數(shù)是奇函數(shù)的是 ( ) A.y=2x2-3 B.y= C.y=x,x∈[0,1] D.y=x 【解析】選D.A中函數(shù)為偶函數(shù),B,C中函數(shù)定義域不關(guān)于原
3、點(diǎn)對(duì)稱,故函數(shù)為非奇非偶函數(shù),D中函數(shù)定義域?yàn)镽,圖像關(guān)于原點(diǎn)對(duì)稱,為奇函數(shù). 4.函數(shù)f(x)=則f的值為 ( ) A. B.- C. D.18 【解析】選C.由題意得f(3)=32-3-3=3,那么=, 所以f=f=1-=. 【加練·固】 函數(shù)f(x)=的值域是________.? 【解析】設(shè)g(x)=2x-x2,0≤x≤3,結(jié)合二次函數(shù)的單調(diào)性可知:g(x)min=g(3)=-3, g(x)max=g(1)=1; 同理,設(shè)h(x)=x2+6x,-2≤x≤0,則h(x)min=h(-2)=-8,h(x)max=h(0)=0. 所以f(x)max=g(1)=
4、1,f(x)min=h(-2)=-8.
答案:[-8,1]
5.函數(shù)f(x)=-x3-3x+5的零點(diǎn)所在的大致區(qū)間為 ( )
A.(-2,0) B.(1,2)
C.(0,1) D.(0,0.5)
【解析】選B.函數(shù)f(x)的圖像在(0,+∞)上是一條連續(xù)不斷的曲線,因?yàn)閒(0)=5>0,f(1)=1>0,f(2)=-9<0,所以f(1)·f(2)<0,所以零點(diǎn)所在的大致區(qū)間為(1,2).
6.定義在R上的偶函數(shù)f(x)滿足:?x1,x2∈[0,+∞)(x1≠x2),有<0,則( )
A.f(3) 5、-2) 6、數(shù)y=f(x)與y=g(x)的圖像如圖所示,則函數(shù)y=f(x)·g(x)的圖像可能
是 ( )
世紀(jì)金榜導(dǎo)學(xué)號(hào)
【解析】選A.由于函數(shù)y=f(x)·g(x)的定義域是函數(shù)y=f(x)與y=g(x)的定義域的交集(-∞,0)∪(0,+∞),所以函數(shù)圖像在x=0處是斷開的,故可以排除C,D;由于當(dāng)x為很小的正數(shù)時(shí),f(x)>0且g(x)<0,故f(x)·g(x)<0,可排除B.
9.已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞增,若f(2)=-2,則滿足f(x-1)≥-2的x的取值范圍是世紀(jì)金榜導(dǎo)學(xué)號(hào)( )
A.(-∞,-1)∪(3,+∞)
B.(-∞,-1]∪[3,+∞)
7、C.[-1,-3]
D.(-∞,-2]∪[2,+∞)
【解析】選B.根據(jù)題意,偶函數(shù)f(x)在[0,+∞)上單調(diào)遞增,且f(2)=-2,
可得f(x)=f(|x|),若f(x-1)≥-2,即有f(|x-1|)≥f(2),
可得|x-1|≥2,解得:x≤-1或x≥3,
即x的取值范圍是(-∞,-1]∪[3,+∞).
10.將一根鐵絲切割成三段做一個(gè)面積為2 m2、形狀為直角三角形的框架,在下列四種長(zhǎng)度的鐵絲中,選用最合理(夠用且浪費(fèi)最少)的是 ( )
世紀(jì)金榜導(dǎo)學(xué)號(hào)
A.6.5 m B.6.8 m
C.7 m D.7.2 m
【解析】選C.設(shè)直角三角形的兩直角 8、邊分別為a,b,直角三角形的框架的周長(zhǎng)為l,則ab=2,所以ab=4,l=a+b+≥2+=4+2≈6.828(m).因?yàn)橐髩蛴们依速M(fèi)最少,所以選C.
二、多項(xiàng)選擇題(本大題共3小題,每小題4分,共12分,在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)是符合題目要求的.全部選對(duì)的得4分,選對(duì)但不全的得2分,有選錯(cuò)的得0分)
11.對(duì)于集合A={x|0≤x≤2},B={y|0≤y≤3},則由下列圖形給出的對(duì)應(yīng)關(guān)系中,能構(gòu)成從A到B的函數(shù)有 ( )
【解析】選A,C,D.根據(jù)函數(shù)的定義可知,A,C,D中的圖形給出的對(duì)應(yīng)關(guān)系能構(gòu)成從A到B的函數(shù).
12.下列關(guān)于函數(shù)y=ax+1,x∈[0,2]的說法 9、正確的是 ( )
A.當(dāng)a<0時(shí),此函數(shù)的最大值為1,最小值為2a+1
B.當(dāng)a<0時(shí),此函數(shù)的最大值為2a+1,最小值為1
C.當(dāng)a>0時(shí),此函數(shù)的最大值為1,最小值為2a+1
D.當(dāng)a>0時(shí),此函數(shù)的最大值為2a+1,最小值為1
【解析】選A,D.當(dāng)a<0時(shí),一次函數(shù)y=ax+1在區(qū)間[0,2]上單調(diào)遞減,當(dāng)x=0時(shí),函數(shù)取得最大值為1;當(dāng)x=2時(shí),函數(shù)取得最小值為2a+1.當(dāng)a>0時(shí),一次函數(shù)y=ax+1在區(qū)間[0,2]上單調(diào)遞增,當(dāng)x=0時(shí),函數(shù)取得最小值為1;當(dāng)x=2時(shí),函數(shù)取得最大值為2a+1.
13.設(shè)函數(shù)f(x)的定義域?yàn)锳,且滿足任意x∈A恒有f(x)+f(2- 10、x)=2的函數(shù)可以是 ( )
世紀(jì)金榜導(dǎo)學(xué)號(hào)
A.f(x)=2-x B.f(x)=(x-1)2
C.f(x)= D.f(x)=(x-2)3
【解析】選A,C.方法一:A項(xiàng)f(x)+f(2-x)=2-x+[2-(2-x)]=2為定值,故A項(xiàng)正確;B項(xiàng)f(x)+f(2-x)=2(x-1)2不為定值,故B項(xiàng)錯(cuò)誤;C項(xiàng),f(x)+f(2-x)=+==2,符合題意,故C項(xiàng)正確;D項(xiàng)f(x)+f(2-x)=(x-2)3-x3不為定值,故D項(xiàng)不正確.
方法二:因?yàn)槿我鈞∈A恒有f(x)+f(2-x)=2,所以函數(shù)的圖像關(guān)于點(diǎn)(1,1)中心對(duì)稱,函數(shù)f(x)=2-x的圖像是過點(diǎn)(1,1)的 11、直線,符合題意;函數(shù)f(x)==1+的圖像關(guān)于點(diǎn)(1,1)中心對(duì)稱,符合題意;利用B,D中兩個(gè)函數(shù)的圖像都不是關(guān)于點(diǎn)(1,1)中心對(duì)稱圖形,不符合題意.
三、填空題(本大題共4個(gè)小題,每小題4分,共16分.把答案填在題中的橫線上)
14.已知函數(shù)f(x)=,則f(1)=_______,函數(shù)y=f(x)的定義域?yàn)開______.?
【解析】由題意得,f(1)==2,
由解得x≤5且x≠0,
所以函數(shù)y=f(x)的定義域?yàn)?-∞,0)∪(0,5].
答案:2 (-∞,0)∪(0,5]
15.函數(shù)f(x)=的零點(diǎn)個(gè)數(shù)是________.?
【解析】當(dāng)x<0時(shí),令2x+3=0,解得x= 12、-,
當(dāng)x≥0時(shí),令x2-4x+3=0,解得x1=1,x2=3,
所以函數(shù)共有3個(gè)零點(diǎn).
答案:3
16.若f(x)=-x2+2ax與g(x)=在區(qū)間[1,2]上都單調(diào)遞減,則實(shí)數(shù)a的取值范圍為_______. 世紀(jì)金榜導(dǎo)學(xué)號(hào)?
【解析】因?yàn)閒(x)=-x2+2ax在[1,2]上單調(diào)遞減,且函數(shù)f(x)的圖像的對(duì)稱軸為x=a,所以a≤1,
因?yàn)間(x)=在區(qū)間[1,2]上單調(diào)遞減,所以a>0,綜上知,a的取值范圍為
(0,1].
答案:(0,1]
17.已知定義在R上的偶函數(shù)f(x)滿足以下兩個(gè)條件:①在(-∞,0]上單調(diào)遞減;②f(1)=-2.則使不等式f(x+1)≤-2成 13、立的x的取值范圍是________. 世紀(jì)金榜導(dǎo)學(xué)號(hào)?
【解析】因?yàn)閒(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0]上單調(diào)遞減,f(1)=-2,
則由f(1+x)≤-2,即f(1+x)≤f(1),
可得:|x+1|≤1,解得:-2≤x≤0.
答案:-2≤x≤0
四、解答題(本大題共6小題,共82分.解答應(yīng)寫出文字說明,證明過程或演算步驟)
18.(12分)已知函數(shù)f(x)=.
(1)求函數(shù)f(x)的定義域.
(2)判斷f(x)的奇偶性并證明.
【解析】(1)由1-x2≠0,得x≠±1,
即f(x)的定義域?yàn)閧x|x≠±1}.
(2)f(x)為偶函數(shù).證明:
由(1)知 14、f(x)的定義域?yàn)閧x|x≠±1},
因?yàn)?x∈{x|x≠±1},都有-x∈{x|x≠±1},
且f(-x)===f(x),
所以f(x)為偶函數(shù).
19.(14分)已知函數(shù)f(x)=
(1)求f(-4),f(5)的值.
(2)畫出函數(shù)f(x)的圖像,并直接寫出處于圖像上升階段時(shí)x的取值集合.
(3)當(dāng)x∈[-2,0]時(shí),求函數(shù)的值域.
【解析】(1)因?yàn)?4<0,5>0,
所以f(-4)=(-4)2+2×(-4)-3=5,
f(5)=-5-3=-8.
(2)畫圖如圖所示,圖像上升時(shí)x的取值集合為{x|-1≤x≤0}.
(3)當(dāng)x∈[-2,0]時(shí),函數(shù)的值域?yàn)閇-4 15、,-3].
20.(14分)若二次函數(shù)滿足f(x+1)-f(x)=2x,且f(0)=1. 世紀(jì)金榜導(dǎo)學(xué)號(hào)
(1)求f(x)的解析式.
(2)若g(x)=f(x)-mx在[2,4]上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍.
【解析】(1)設(shè)二次函數(shù)的解析式為f(x)=ax2+bx+c(a≠0),
由f(0)=1得c=1,故f(x)=ax2+bx+1.
因?yàn)閒(x+1)-f(x)=2x,所以a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.即2ax+a+b=2x,
根據(jù)系數(shù)對(duì)應(yīng)相等所以
所以f(x)=x2-x+1.
(2)因?yàn)間(x)=f(x)-mx=x2-(1+m)x+1的 16、圖像關(guān)于直線x=對(duì)稱,
又函數(shù)g(x)在[2,4]上是單調(diào)函數(shù),
所以≤2或≥4,解得m≤3或m≥7,
故m的取值范圍是(-∞,3]∪[7,+∞).
21.(14分)定義在R上的偶函數(shù)f(x),當(dāng)x∈(-∞,0]時(shí),f(x)=-x2+4x-1.
世紀(jì)金榜導(dǎo)學(xué)號(hào)
(1)求函數(shù)f(x)在x∈(0,+∞)上的解析式.
(2)求函數(shù)f(x)在x∈[-2,3]上的最大值和最小值.
【解析】(1)根據(jù)題意,設(shè)x>0,則-x<0,
則f(-x)=-x2-4x-1,又由y=f(x)為偶函數(shù),
則f(x)=-x2-4x-1,x∈(0,+∞).
(2)由(1)的結(jié)論:f(x)=
y=f(x 17、)在x∈[-2,0]上單調(diào)遞增,在x∈[0,3]上單調(diào)遞減,則f(x)max=f(0)=-1;f(x)min
=min{f(-2),f(3)}=f(3)=-22,函數(shù)f(x)在[-2,3]上的最大值是-1,最小值是-22.
22.(14分)已知函數(shù)f(x)=x+,且此函數(shù)的圖像過點(diǎn)(1,5). 世紀(jì)金榜導(dǎo)學(xué)號(hào)
(1)求實(shí)數(shù)m的值.(2)判斷f(x)的奇偶性.
(3)討論函數(shù)f(x)在[2,+∞)上的單調(diào)性,證明你的結(jié)論.
【解析】(1)因?yàn)閒(x)過點(diǎn)(1,5),所以1+m=5?m=4.
(2)對(duì)于f(x)=x+,因?yàn)閤≠0,
所以f(x)的定義域?yàn)?-∞,0)∪(0,+∞),關(guān) 18、于原點(diǎn)對(duì)稱.所以f(-x)=-x+=-f(x),
所以f(x)為奇函數(shù).
(3)f(x)在[2,+∞)上單調(diào)遞增.證明如下:設(shè)x1,x2∈[2,+∞)且x1 19、均通勤時(shí)間是f(x)=
(單位:分鐘),而公交群體的人均通勤時(shí)間不受x影響,恒為40分鐘,根據(jù)上述分析結(jié)果回答下列問題: 世紀(jì)金榜導(dǎo)學(xué)號(hào)
(1)請(qǐng)你說明,當(dāng)x在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族S的人均通勤時(shí)間g(x)的表達(dá)式;討論g(x)的單調(diào)性,并說明其實(shí)際意義.
【解析】(1)由題意知,當(dāng)0 20、時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間.
(2)當(dāng)0
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024《增值稅法》全文學(xué)習(xí)解讀(規(guī)范增值稅的征收和繳納保護(hù)納稅人的合法權(quán)益)
- 2024《文物保護(hù)法》全文解讀學(xué)習(xí)(加強(qiáng)對(duì)文物的保護(hù)促進(jìn)科學(xué)研究工作)
- 銷售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷售話術(shù)和技巧
- 銷售技巧:接近客戶的8種套路
- 銷售套路總結(jié)
- 房產(chǎn)銷售中的常見問題及解決方法
- 銷售技巧:值得默念的成交話術(shù)
- 銷售資料:讓人舒服的35種說話方式
- 汽車銷售績(jī)效管理規(guī)范
- 銷售技巧培訓(xùn)課件:絕對(duì)成交的銷售話術(shù)
- 頂尖銷售技巧總結(jié)
- 銷售技巧:電話營(yíng)銷十大定律
- 銷售逼單最好的二十三種技巧
- 銷售最常遇到的10大麻煩