新版高考數(shù)學(xué)備考沖刺之易錯(cuò)點(diǎn)點(diǎn)睛系列專題 三角函數(shù)學(xué)生版
《新版高考數(shù)學(xué)備考沖刺之易錯(cuò)點(diǎn)點(diǎn)睛系列專題 三角函數(shù)學(xué)生版》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版高考數(shù)學(xué)備考沖刺之易錯(cuò)點(diǎn)點(diǎn)睛系列專題 三角函數(shù)學(xué)生版(25頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 1
2、 1 三角函數(shù) 一、高考預(yù)測(cè) 該專題是高考重點(diǎn)考查的部分,從最近幾年考查的情況看,主要考查三角函數(shù)的圖象和性質(zhì)、三角函數(shù)式的化簡與求值、正余弦定理解三角形、三角形中的三角恒等變換以及三角函數(shù)、解三角形和平面向量在立體幾何、解析幾何等問題中的應(yīng)用.該部分在試卷中一般是2~3個(gè)選擇題或者填空題,一個(gè)解答題,選擇題在于有針對(duì)性地考查本專題的重要知識(shí)點(diǎn)(如三角函數(shù)性質(zhì)、平面向量的數(shù)量積
3、等),解答題一般有三個(gè)命題方向,一是以考查三角函數(shù)的圖象和性質(zhì)為主,二是把解三角形與三角函數(shù)的性質(zhì)、三角恒等變換交匯,三是考查解三角形或者解三角形在實(shí)際問題中的應(yīng)用.由于該專題是高中數(shù)學(xué)的基礎(chǔ)知識(shí)和工具性知識(shí),在試題的難度上不大,一般都是中等難度或者較為容易的試題.從近幾年全國各地的高考試題來看,三角函數(shù)這部分的試題有以下特點(diǎn): 1.考小題,重在基礎(chǔ)運(yùn)用 二、知識(shí)導(dǎo)學(xué) 要點(diǎn)1:三角函數(shù)的概念、同角誘導(dǎo)公式的簡單應(yīng)用 1.三角函數(shù)的定義是求三角函數(shù)值的基本依據(jù),如果已知角終邊上的點(diǎn),則利用三角函數(shù)的定義,可求該角的正弦、余弦、正切值。2.同角三角函數(shù)間的關(guān)系、誘導(dǎo)公式在三角函數(shù)式的化
4、簡中起著舉足輕重的作用,應(yīng)注意正確選擇公式、注意公式應(yīng)用的條件。 要點(diǎn)2:函數(shù)y=Asin(ωx+φ)的解析式、圖象問題 ,頻率是,相位是,初相是;其圖象的對(duì)稱軸是直線,凡是該圖象與直線的交點(diǎn)都是該圖象的對(duì)稱中心。 4.由y=sinx的圖象變換出y=sin(ωx+)的圖象一般有兩個(gè)途徑,只有區(qū)別開這兩個(gè)途徑,才能靈活進(jìn)行圖象變換。利用圖象的變換作圖象時(shí),提倡先平移后伸縮,但先伸縮后平移也經(jīng)常出現(xiàn)無論哪種變形,請(qǐng)切記每一個(gè)變換總是對(duì)字母x而言,即圖象變換要看“變量”起多大變化,而不是“角變化”多少。 途徑一:先平移變換再周期變換(伸縮變換)先將y=sinx的圖象向左(>0)或向右(<0=
5、平移||個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?ω>0),便得y=sin(ωx+)的圖象。 途徑二:先周期變換(伸縮變換)再平移變換。先將y=sinx的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?ω>0),再沿x軸向左(>0)或向右(<0=平移個(gè)單位,便得y=sin(ωx+)的圖象。 要點(diǎn)3:與三角函數(shù)的性質(zhì)有關(guān)的問題 1.正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖像 2.三角函數(shù)的單調(diào)區(qū)間:的遞增區(qū)間是, 遞減區(qū)間是; 的遞增區(qū)間是,遞減區(qū)間是, 的遞增區(qū)間是, 3.對(duì)稱軸與對(duì)稱中心:的對(duì)稱軸為,對(duì)稱中心為; 的對(duì)稱軸為,對(duì)稱中心為;對(duì)于和、”的形式,在利用周期公式,另外還有圖像
6、法和定義法。 要點(diǎn)4:三角變換及求值 1.兩角和與差的三角函數(shù); ;。 2.二倍角公式;; 。 3.三角函數(shù)式的化簡 4.三角函數(shù)的求值類型有三類 (1)給角求值:一般所給出的角都是非特殊角,要觀察所給角與特殊角間的關(guān)系,利用三角變換消去非特殊角,轉(zhuǎn)化為求特殊角的三角函數(shù)值問題; (2)給值求值:給出某些角的三角函數(shù)式的值,求另外一些角的三角函數(shù)值,解題的關(guān)鍵在于“變角”,如等,把所求角用含已知角的式子表示,求解時(shí)要注意角的范圍的討論; (3)給值求角:實(shí)質(zhì)上轉(zhuǎn)化為“給值求值”問題,由所得的所求角的函數(shù)值結(jié)合所求角的范圍及函數(shù)的單調(diào)性求得角。 要點(diǎn)5:正、余弦定理的應(yīng)用
7、 1.直角三角形中各元素間的關(guān)系:如圖,在△ABC中,C=90°,AB=c,AC=b,BC=a。 (1)三邊之間的關(guān)系:a2+b2=c2。(勾股定理)(2)銳角之間的關(guān)系:A+B=90°;(3)邊角之間的關(guān)系:(銳角三角函數(shù)定義) sinA=cosB=,cosA=sinB=,tanA=。 2.斜三角形中各元素間的關(guān)系:如圖6-29,在△ABC中,A、B、C為其內(nèi)角,a、b、c分別表示A、B、C的對(duì)邊。(1)三角形內(nèi)角和:A+B+C=π。 (2)正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。 。(R為外接圓半徑) (3)余弦定理:三角形任何一邊的平方等于其他兩邊平方的和減去
8、這兩邊與它們夾角的余弦的積的兩倍。a2=b2+c2-2bccosA;b2=c2+a2-2cacosB;c2=a2+b2-2abcosC。 在三角形中考查三角函數(shù)式變換,是近幾年高考的熱點(diǎn),它是在新的載體上進(jìn)行的三角變換,因此要時(shí)刻注意它重要性:一是作為三角形問題,它必然要用到三角形的內(nèi)角和定理,正、余弦定理及有關(guān)三角形的性質(zhì),及時(shí)進(jìn)行邊角轉(zhuǎn)化,有利于發(fā)現(xiàn)解決問題的思路;其二,它畢竟是三角形變換,只是角的范圍受到了限制,因此常見的三角變換方法和原則都是適用的,注意“三統(tǒng)一”,即“統(tǒng)一角、統(tǒng)一函數(shù)、統(tǒng)一結(jié)構(gòu)”,是使問題獲得解決的突破口。 要點(diǎn)6:三角函數(shù)的實(shí)際應(yīng)用 三角形中的三角變換 三
9、角形中的三角變換,除了應(yīng)用上述公式和上述變換方法外,還要注意三角形自身的特點(diǎn)。 (1)角的變換 因?yàn)樵凇鰽BC中,A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。;(2)三角形邊、角關(guān)系定理及面積公式,正弦定理,余弦定理。 r為三角形內(nèi)切圓半徑,p為周長之半。(3)在△ABC中,熟記并會(huì)證明:∠A,∠B,∠C成等差數(shù)列的充分必要條件是∠B=60°;△ABC是正三角形的充分必要條件是∠A,∠B,∠C成等差數(shù)列且a,b,c成等比數(shù)列。 在解三角形時(shí),三角形內(nèi)角的正弦值一定為正,但該角不一定是銳角,也可能為鈍角(或直角),這往往造成有
10、兩解,應(yīng)注意分類討論,但三角形內(nèi)角的余弦為正,該角一定為銳角,且有惟一解,因此,在解三角形中,若有求角問題,應(yīng)盡量避免求正弦值。 要點(diǎn)7:向量與三角函數(shù)的綜合三、易錯(cuò)點(diǎn)點(diǎn)睛 命題角度1 三角函數(shù)的圖象和性質(zhì) 1.函數(shù)=sinx+2|sinx|,x∈(0,2π)的圖像與直線y=k有且僅有兩個(gè)不同的交點(diǎn),則眾的取值范圍是 . [考場錯(cuò)解] ∵=∴的值域?yàn)?0,3),∵與y=k有交點(diǎn),∴k∈[0,3]. ( ) A.橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再向左平行移動(dòng)個(gè)單位長度 [考場錯(cuò)解]∵將函數(shù)y=sin(2x+)的所有點(diǎn)的橫
11、坐標(biāo)縮短到原來的倍,得函數(shù)y=sin(x+)的圖像,再向右平行移動(dòng)子個(gè)單位長度后得函數(shù)y=sin(x+)=cosx [專家把脈] 選B有兩處錯(cuò)誤,一是若將函數(shù)=sin(2x+)橫坐標(biāo)縮短到原來的倍,(縱坐標(biāo)標(biāo)不變)所得函數(shù)y==sin(4x+),而不是=sin(x+),二是將函數(shù)y= [對(duì)癥下藥] 選C 將函數(shù)y=sin(2x+)圖像上所有的點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得函數(shù)y=sin(x+)的圖像;再向左平行移動(dòng)子個(gè)單位長度后便得y=sin(x++)=cosx的圖像.故選C. 3.設(shè)函數(shù)=sin(2x+)(-π<<0),y=圖像的一條對(duì)稱軸是直線x=. (1)求;
12、 (2)求函數(shù)y=的單調(diào)增區(qū)間; (3)畫出函數(shù)y=在區(qū)間[0,π]上的圖像. [考場錯(cuò)解] (1)∵x=是函數(shù)y=的圖像的對(duì)稱軸,∴sin(2×+)=±1,∴ +=kπ+k [專家把脈]以上解答錯(cuò)在第(2)小題求函數(shù)單調(diào)區(qū)間時(shí),令處,因若把看成一個(gè)整體u,則y=sinu的周期為2π。故應(yīng)令,解得的x范圍才是原函數(shù)的遞增區(qū)間. 解得所以函數(shù)y=sin(2x-)的單調(diào)遞增區(qū)間為(3)由知 x 0 π y -1 0 1 0 故函數(shù)y=f(x)在區(qū)間[0,π]上圖像是 5. 求函數(shù)的最小正周期和最小值;并寫出該函數(shù)在上的單調(diào)遞增區(qū)間。 [
13、考場錯(cuò)解] [對(duì)癥下藥]∵函數(shù)y=sin4x+sinxcosx-cos4x =(sin2x-cos2x)(sin2x+cos2x)+ sin2x =sin2x-cos2x=2sin(2x-).故該函數(shù)的最小正周期是π. 當(dāng)2x-=2kπ-時(shí),即x=kπ-時(shí),y有最小值 令2kπ-≤2x-≤2kπ+,k∈Z.解得kπ-≤x≤kπ+,k∈Z. 令K=0時(shí),-≤x≤.又∵0≤x≤π,∴0≤x≤, K=1時(shí), π≤x≤π 又∵0≤x≤π. 命題角度2三角函數(shù)的恒等變形 1.設(shè)α為第四象限的角,若,則tan2α= . [考場錯(cuò)解] 填±∵ ∴ [
14、考場錯(cuò)解] (1)由sinx+cosx=,平方得sin2x+ 2sinxcosx+cos2x=()2,即2sinxcosx=-.
[專家把脈] 以上解答在利用三角恒等變形化簡時(shí)出現(xiàn)了錯(cuò)誤.即由 =sinxcosx(2-sinx -cosx)變形時(shí)認(rèn)為2sin2 =1+cosx,用錯(cuò)了公式,因?yàn)?2sin2 =1-cosx.因此原式化簡結(jié)果是錯(cuò)誤的.
[對(duì)癥下藥]解法1(1)由sinx+cosx=,平方得sin2x+2sinxcosx+cos2x=即2sinxcosx=-.
∵(sinx-cosx)2=1-2sinxcosx=1+.又∵- 15、>0,sinx-cosx<0.
∴sinx-cosx=.
(2)
①
②
解法2 (1)聯(lián)立方程
由①得slnx=-cosx,將其代入②,整理得25cos2x- 5cosx-12=0,∴cosx=-或(cosx=)
∵- 16、-或tanα=又∵sin(2α+)=sin2αcos+cos2α·sin
將tanα=時(shí)代入上式得即
[專家把脈] 上述解答忽視了題設(shè)條件提供的角的范圍的運(yùn)用,∵α∈(,π),tanα<0,
∴tanα=應(yīng)舍去,因此原題只有一解.
將代入上式得sin(2α+)=
[專家把脈] 上面解答在三角恒等變形中,用錯(cuò)了兩個(gè)公式:①1+cos2x≠2sin2x;②sin(+x)≠sinx因?yàn)?cos2x=1-2sin2x=2cos2x-1.∴1+cos2x=2cos2x.由誘導(dǎo)公式“奇變偶不變”知sin(+x)=cosx.
[對(duì)癥下藥] ∵=其中角滿足由已知有=4,解之得,a=
17、
[考場錯(cuò)解] 設(shè)S為十字形的面積,則S=2xy=2sinθ· cosθ=sin2θ(≤θ<).
(2)當(dāng)sin2θ=1即θ=時(shí),S最大,S的最大值為1
解法2 ∵S=2sinθcosθ-cos2θ,∴S′=2cos2θ- 2sin2θ+2sinθ·cosθ=2cos2θ+sin2θ.
A.2x>3sinx B.2x<3sinx C.2x=3sinx D.與x的取值有關(guān)
[考場錯(cuò)解] 選A 設(shè)=2x-3sinx,∴= 2-3cosx,∵0 18、]∵=3(-cosx).當(dāng)0 19、,由②式知tan(an-1,-an)< 0.由此可知an+1-an必在第二象限∴ 20、,π+kπ),即x0在第二或第四象限內(nèi).由①式=cosx(tanx+x)在第二象限或第四象限中的符號(hào)可列表如下:
X
()
的符號(hào)
K為奇數(shù)
-
0
+
K為偶數(shù)
+
0
-
所以滿足=0的正根x0都為f(x)的極值點(diǎn).由題設(shè)條件,a1,a2,…,an…為方程x=-tanx的全部正實(shí)根且滿足a1 21、樣繼續(xù).
又a+λb與λa+b的夾角為銳角,∴(a+λb)·(λa+ b)>0,且a+λb≠μ(λa+b)(其中μ k,μ>0)由(a+λb)· (λa+b)>0,得|a|2+λ|b|2+(λ2+1)a·b>0即3λ2+11λ +3>0,解得λ>.由a+λb≠μ (λa+b),得μλ≠1,μ≠λ,即λ≠1,綜上所述實(shí)數(shù)λ的取值范圍是(-∞,,1)∪(1,+∞).
3.已知O為△ABC所在平面內(nèi)一點(diǎn)且滿足,則△AOB與△AOC的面積之比為 ( )
A.1 B. D.2
△AOB的面積與△AOC的面積之比為3:2,選B.
(2)不妨設(shè)A(0,0),B( 22、1,0),C(0,1),O(x,y),則由專家會(huì)診向量的基本概念是向量的基礎(chǔ),學(xué)習(xí)時(shí)應(yīng)注意對(duì)向量的夾角、模等概念的理解,不要把向量與實(shí)數(shù)胡亂類比;向量的運(yùn)算包括兩種形式:(1)向量式;(2)坐標(biāo)式;在學(xué)習(xí)時(shí)不要過分偏重坐標(biāo)式,有些題目用向量式來進(jìn)行計(jì)算是比較方便的,那么對(duì)向量的加、減法法則、定比分點(diǎn)的向量式等內(nèi)容就應(yīng)重點(diǎn)學(xué)習(xí),在應(yīng)用時(shí)不要出錯(cuò),解題時(shí)應(yīng)善于將向量用一組基底來表示,要會(huì)應(yīng)用向量共線的充要條件來解題.
命題角度5 平面向量與三角、數(shù)列
(2)函數(shù)y=2sin2x的圖像按向量c=(m,n)平移后得到y(tǒng)=2sin2(x+m)-n的圖像,即y=f(x)的圖像,由(1)得f(x)= 23、2sin2(x+
y=f(x)的圖像,由(1)得f(x)=2sin2(
2.已知i,j分別為x軸,y軸正方向上的單位向量,
(1)求
[考場錯(cuò)解](1)由已知有
[專家把脈]向量是一個(gè)既有方向又有大小的量,而錯(cuò)解中只研究大小而不管方向,把向量與實(shí)數(shù)混為一談,出現(xiàn)了很多知識(shí)性的錯(cuò)誤.
[對(duì)癥下藥] (1)
3.在直角坐標(biāo)平面中,已知點(diǎn)P1(1,2),P2(2,22),P3(3,23)…,Pn(n,2n),其中n是正整數(shù),對(duì)平面上任一點(diǎn)Ao,記A1為Ao關(guān)于點(diǎn)P1的對(duì)稱點(diǎn),A2為A1,關(guān)于點(diǎn)P2的對(duì)稱點(diǎn),…,An為An-1關(guān)于點(diǎn)Pn的對(duì)稱點(diǎn).
[考場錯(cuò) 24、解] 第(2)問,由(1)知=(2,4),依題意,將曲線C按向量(2,4)平移得到 因此,曲線C是函數(shù)y=g(x)的圖像,其中g(shù)(x)是以 3為周期的周期函數(shù),且當(dāng)x∈(-2,1)時(shí),g(x)=1g(x+2)-4,于是,當(dāng)x∈(1,4)時(shí),g(x)=1g(x-1)-4.
專家會(huì)診
向量與三角函數(shù)、數(shù)列綜合的題目,實(shí)際上是以向量為載體考查三角函數(shù)、數(shù)列的知識(shí),解題的關(guān)鍵是利用向量的數(shù)量積等知識(shí)將問題轉(zhuǎn)化為三角函數(shù)、數(shù)列的問題,轉(zhuǎn)化時(shí)不要把向量與實(shí)數(shù)搞混淆,一般來說向量與三角函數(shù)結(jié)合的題目難度不大,向量與數(shù)列結(jié)合的題目,綜合性強(qiáng)、能力要求較高.
命題角度6平面向量與平面解析幾何
25、
1.(典型例題)已知橢圓的中心在原點(diǎn),離心率為,一個(gè)焦點(diǎn)F(-m,0)(m是大于0的常數(shù).)
(1)求橢圓的方程;
(2)設(shè)Q是橢圓上的一點(diǎn),且過點(diǎn)F、 Q的直線l與y 軸交于點(diǎn)M,若,求化時(shí)出現(xiàn)錯(cuò)誤,依題意應(yīng)轉(zhuǎn)化為再分類求解k
[對(duì)癥下藥] (1)設(shè)所求橢圓方程為1 (a>b>O). 由已知得c=m,2.梯形ABCD的底邊AB在y軸上,原點(diǎn)O為AB的中點(diǎn),|AB|=AC⊥BD,M為CD的中點(diǎn). (1)求點(diǎn)M的軌跡方程; (2)過M作AB的垂線,垂足為N,若存在常數(shù)λo,使,且P點(diǎn)到A、B的距離和為定值,求點(diǎn)P的軌跡C的方程.
[考場錯(cuò)解] 第(2)問:設(shè)P(x,y 26、),M(xo,yo),則N(0,yo)
∴x-xo=-λox,y-yo=λo(yo-y),∴λo=-1.
[專家把脈] 對(duì)分析不夠,匆忙設(shè)坐標(biāo)進(jìn)行坐標(biāo)運(yùn)算,實(shí)際上M、N、P三點(diǎn)共線,它們的縱坐標(biāo)是相等的,導(dǎo)致后面求出λo=-1是錯(cuò)誤的.
[對(duì)癥下藥] (1)解法1:設(shè)M(x,y),則C(x,-1+
即(x,y-1)·(x,y+1)=0,得x2+y2=1,又x≠0,∴M的軌跡方程是:x2+y2=1(x≠0)
解法2:設(shè)AC與BD交于E,連結(jié)EM、EO,∵AC+BD,∴∠CED=∠AEB=90°,又M、O分3.ABCD是邊長為2的正方形紙片,以某動(dòng)直線l為折痕將正方 27、形在其下方的部分向上翻折,使得每次翻折后點(diǎn)。都落在AD上,記為B';折痕l與AB交于點(diǎn)E,使M滿足關(guān)系式
(1)建立適當(dāng)坐標(biāo)系,求點(diǎn)M的軌跡方程; (2)若曲線C是由點(diǎn)M的軌跡及其關(guān)于邊AB對(duì)稱的
[對(duì)癥下藥] (1)解法1以AB所在的直線為y軸,AB的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖6-6所示的直角坐標(biāo)系,別 A(0,1),B(0,-1),設(shè)E(0,t),則由已知有0≤t≤1,由(2)由(1)結(jié)合已知條件知C的方程是x2=-4y (-2≤x≤2),由知F(0,),設(shè)過F的直線的斜率為k,則方程為y=,P(x1,y1),Q(x2,y2),由得x1=-λx2,聯(lián)立直線方程和C得方程是x 28、2 +4kx-2=0,由-2≤x≤2知上述方程在[-2,2]內(nèi)有兩個(gè)解,由;次函數(shù)的圖像知,由x=-λx2可得由韋達(dá)定理得8k2=.
[考場錯(cuò)解] (1)設(shè)橢圓方程為,F(xiàn)(c,0)聯(lián)立y=x-c與得([專家把脈]與(3,-1)共線,不是相等,錯(cuò)解中,認(rèn)為(3,-1),這是錯(cuò)誤的,共線是比例相等.
(x,y)=λ(x1,y1)+μ(x2,y2), ∴M(x,y)在橢圓上, ∴(λx1+μx2)23(λy1+μy2)2=3b2.
即λ2()+2λμ(x1x2+2y1y2)= 3b2.①
由(1)知x2+x2=∴ ∴x1x2+3y1y2=x1+x2+3(x1-c)( 29、x2-c)
=4x1x2-3(x1+x2)c+3c2==0.
又又,代入①得 λ2+μ2=1.故λ2+μ2為定值,定值為1.
1.在△ABC中,sinA+cosA=AB=3,求tanA的值和△ABC的面積.
=sin(45°+60°)= 當(dāng)A=165°時(shí),tanA=tan(45°+ 120°)=-2+,sinA=sin(45°+120°)
[對(duì)癥下藥] 解法1.∵sinA+cosA=<180°,
∴A-45°=60°,得A=105°.∴tanA=tan(45°+60°)=-2-,sinA=sin(45°+60°)= ,
S△ABC=
解法2 ∵sin
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024《增值稅法》全文學(xué)習(xí)解讀(規(guī)范增值稅的征收和繳納保護(hù)納稅人的合法權(quán)益)
- 2024《文物保護(hù)法》全文解讀學(xué)習(xí)(加強(qiáng)對(duì)文物的保護(hù)促進(jìn)科學(xué)研究工作)
- 銷售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷售話術(shù)和技巧
- 銷售技巧:接近客戶的8種套路
- 銷售套路總結(jié)
- 房產(chǎn)銷售中的常見問題及解決方法
- 銷售技巧:值得默念的成交話術(shù)
- 銷售資料:讓人舒服的35種說話方式
- 汽車銷售績效管理規(guī)范
- 銷售技巧培訓(xùn)課件:絕對(duì)成交的銷售話術(shù)
- 頂尖銷售技巧總結(jié)
- 銷售技巧:電話營銷十大定律
- 銷售逼單最好的二十三種技巧
- 銷售最常遇到的10大麻煩