《新編新課標(biāo)A版數(shù)學(xué)【理】一輪復(fù)習(xí)質(zhì)量檢測(cè)題 質(zhì)量檢測(cè)(一)》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編新課標(biāo)A版數(shù)學(xué)【理】一輪復(fù)習(xí)質(zhì)量檢測(cè)題 質(zhì)量檢測(cè)(一)(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新編高考數(shù)學(xué)復(fù)習(xí)資料
質(zhì)量檢測(cè)(一)
測(cè)試內(nèi)容:集合、常用邏輯用語(yǔ)與函數(shù)、導(dǎo)數(shù)及應(yīng)用
時(shí)間:90分鐘 分值:120分
一、選擇題(本大題共10小題,每小題5分,共50分)
1.(2013·陜西卷)設(shè)全集為R,函數(shù)f(x)=的定義域?yàn)镸,則?RM為( )
A.[-1,1] B.(-1,1)
C.(-∞,-1]∪[1,+∞) D.(-∞,-1)∪(1,+∞)
解析:從函數(shù)定義域切入,∵1-x2≥0,∴-1≤x≤1,依據(jù)補(bǔ)集的運(yùn)算知所求集合為(-∞,-1)∪(1,+∞),選D.
答案:D
2.(2013·福建卷)已知集合A={1,a},B={1,2,3},則“a=3”是
2、“A?B”的( )
A.充分而不必要條件 B.必要而不充分條件
C.充分必要條件 D.既不充分也不必要條件
解析:因?yàn)锳={1,a},B={1,2,3},若a=3,則A={1,3},所以A?B;若A?B,則a=2或a=3,所以A?BDa=3,所以“a=3”是“A?B”的充分而不必要條件.
答案:A
3.(2013·山東煙臺(tái)診斷)下列說(shuō)法錯(cuò)誤的是( )
A.命題“若x2-4x+3=0,則x=3”的逆否命題是“若x≠3,則x2-4x+3≠0”
B.“x>1”是“|x|>0”的充分不必要條件
C.若p∧q為假命題,則p、q均為假命題
D.命題p:“?x∈R,使得x2+x
3、+1<0”,則綈p:“?x∈R,x2+x+1≥0”
解析:若p∧q為假命題,則p、q中至少有一個(gè)是假命題,故選C.
答案:C
解析:由定積分的幾何意義,結(jié)合三個(gè)函數(shù)的圖象,易知a>b>c.
答案:B
5.若函數(shù)f(x)=ax2+(a2-1)x-3a為偶函數(shù),其定義域?yàn)閇4a+2,a2+1],則f(x)的最小值為( )
A.3 B.0 C.2 D.-1
解析:由f(x)為偶函數(shù)知a2-1=0,
即a=±1,
又其定義域需關(guān)于原點(diǎn)對(duì)稱,
即4a+2+a2+1=0必有a=-1.
這時(shí)f(x)=-x2+3,
其最小值為f(-2)=f(2)=-1.
故選D.
答案
4、:D
6.已知a是函數(shù)f(x)=2x-logx的零點(diǎn),若00
C.f(x0)<0 D.f(x0)的符號(hào)不能確定
解析:
答案:C
7.(2014·河北名校名師俱樂(lè)部二調(diào))曲線y=x2+x在點(diǎn)(2,4)處的切線與坐標(biāo)軸圍成的三角形面積為( )
A.1 B.2 C. D.
解析:y′=x+1,所以切線在點(diǎn)(2,4)處的斜率為3,切線方程為y-4=3(x-2),令x=0,得y=-2,令y=0,得x=,所以切線與坐標(biāo)軸圍成的三角形的面積為S=×|-2|×=.
答案:D
8.(2013·
5、青島市統(tǒng)一質(zhì)檢)已知函數(shù)f(x)對(duì)定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時(shí)其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x),若20,∴x>2時(shí)f′(x)>0,x<2時(shí),f′(x)<0,f(x)在(-∞,2)上單調(diào)減,在(2,+∞)上單調(diào)增,2
6、2,∴l(xiāng)og2a<2<2a,知f(log2a)
7、個(gè)是函數(shù)f(x)=x3+ax2+(a2-1)x+1(a∈R,a≠0)的導(dǎo)函數(shù)f ′(x)的圖象,則f(-1)等于( )
A. B.- C. D.-或
解析:∵f ′(x)=x2+2ax+(a2-1),
∴導(dǎo)函數(shù)f ′(x)的圖象開(kāi)口向上.
又∵a≠0,∴其圖象必為第(3)個(gè)圖.
由圖象特征知f ′(0)=0,且-a>0,∴a=-1,
∴f(x)=x3-x2+1,
故f(-1)=--1+1=-.
答案:B
二、填空題(本大題共4小題,每小題5分,共20分)
11.(2013·重慶市九校聯(lián)考)已知函數(shù)f(x)=,則f=________.
解析:f=-2,f(-2)
8、=,
∴f=f(-2)=.
答案:
12.f(x)=xn2-3n(n∈Z)是偶函數(shù),且y=f(x)在(0,+∞)上是減函數(shù),則n=________.
解析:因?yàn)閒(x)在(0,+∞)上是減函數(shù),所以n2-3n<0,即0
9、
答案:
14.(2014·安徽池州一中高三月考)設(shè)二次函數(shù)g(x)的圖象在點(diǎn)(m,g(m))處的切線方程為y=h(x),若f(x)=g(x)-h(huán)(x),則下面說(shuō)法正確的有________(填出所有正確結(jié)論的序號(hào)).
①存在相異的實(shí)數(shù)x1,x2,使f(x1)=f(x2)成立;
②f(x)在x=m處取得極小值;
③f(x)在x=m處取得極大值;
④不等式|f(x)|<的解集非空;
⑤直線x=m一定為函數(shù)f(x)圖象的對(duì)稱軸.
解析:特例法:不妨設(shè)g(x)=x2,m=1.
∴g(x)在點(diǎn)(1,1)處的切線方程為h(x)=2x-1,∴f(x)=x2-2x+1,可以看出①②④⑤都成立
10、.對(duì)比②③⑤再舉例g(x)=-x2,在點(diǎn)(1,-1)處的切線方程為h(x)=-2x+1.
f(x)=-x2+2x-1=-(x-1)2+1,故②不對(duì).∴①④⑤正確.
答案:①④⑤
三、解答題(本大題共4小題,共50分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.)
15.(滿分12分)已知命題p:方程2x2+ax-a2=0在[-1,1]上有解;命題q:只有一個(gè)實(shí)數(shù)x0滿足不等式x+2ax0+2a≤0,若命題“p∨q”是假命題,求a的取值范圍.
解:由2x2+ax-a2=0,得(2x-a)(x+a)=0,∴x=或x=-a,
∴當(dāng)命題p為真命題時(shí),≤1或|-a|≤1,∴|a|≤2.
又“只
11、有一個(gè)實(shí)數(shù)x0滿足不等式x+2ax0+2a≤0”,
即拋物線y=x2+2ax+2a與x軸只有一個(gè)交點(diǎn),
∴Δ=4a2-8a=0,∴a=0或a=2.
∴當(dāng)命題q為真命題時(shí),a=0或a=2.
∴命題“p∨q”為真命題時(shí),|a|≤2.
∵命題“p∨q”為假命題,∴a>2或a<-2.
即a的取值范圍為{a|a>2,或a<-2}.
16.(滿分12分)2013年8月31日第十二屆全運(yùn)會(huì)在遼寧沈陽(yáng)開(kāi)幕,歷時(shí)13天.某小商品公司以此為契機(jī),開(kāi)發(fā)了一種紀(jì)念品,每件產(chǎn)品的成本是15元,銷售價(jià)是20元,月平均銷售a件,通過(guò)改進(jìn)工藝,產(chǎn)品的成本不變,質(zhì)量得到提高,市場(chǎng)分析的結(jié)果表明:如果產(chǎn)品的銷售價(jià)提
12、高的百分率為x(00;當(dāng)
13、<0.
所以函數(shù)y=5a(1+4x-x2-4x3)(0
14、0)
由xf(x)0),故h(x)在區(qū)間(0,+∞)上是減函數(shù),
故當(dāng)0h(1)=0,當(dāng)x>1時(shí),h(x)0,當(dāng)x>1時(shí),g′(x)<0
?g(x)在(0,1)是增函數(shù),在(1,+∞)是減函數(shù),故g(x)max=g(1)=1
要使1
故m的取值范圍是(1,+∞).
18.(滿分14分)(2014·遼寧沈陽(yáng)二中月考)已知函數(shù)f(x)=ax2-(a+2)x+ln x.
(1)當(dāng)a=1時(shí),求
15、曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(3)若對(duì)任意x1,x2∈(0,+∞),x10時(shí),f′(x)=2ax-(a+2)+
=(x>0)
令f′(x)=0,即f′(x)=
==0,
所以
16、x=或x=.
當(dāng)0<≤1,即a≥1時(shí),f(x)在[1,e]上單調(diào)遞增,所以f(x)在[1,e]上的最小值是f(1)=-2;
當(dāng)1<0,此時(shí)g(x)在(0,+∞)上單調(diào)遞增;
當(dāng)a≠0時(shí),只需g′(x)≥0在(0,+∞)上恒成立,因?yàn)閤∈(0,+∞),只要2ax2-ax+1≥0,
則需要a>0,
對(duì)于函數(shù)y=2ax2-ax+1,過(guò)定點(diǎn)(0,1),對(duì)稱軸x=>0,只需Δ=a2-8a≤0,
即0