2019年高考數(shù)學(xué)復(fù)習(xí)大二輪精準(zhǔn)提分練習(xí)第二篇 第28練

上傳人:努力****83 文檔編號(hào):65770827 上傳時(shí)間:2022-03-25 格式:DOCX 頁(yè)數(shù):14 大?。?71.67KB
收藏 版權(quán)申訴 舉報(bào) 下載
2019年高考數(shù)學(xué)復(fù)習(xí)大二輪精準(zhǔn)提分練習(xí)第二篇 第28練_第1頁(yè)
第1頁(yè) / 共14頁(yè)
2019年高考數(shù)學(xué)復(fù)習(xí)大二輪精準(zhǔn)提分練習(xí)第二篇 第28練_第2頁(yè)
第2頁(yè) / 共14頁(yè)
2019年高考數(shù)學(xué)復(fù)習(xí)大二輪精準(zhǔn)提分練習(xí)第二篇 第28練_第3頁(yè)
第3頁(yè) / 共14頁(yè)

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2019年高考數(shù)學(xué)復(fù)習(xí)大二輪精準(zhǔn)提分練習(xí)第二篇 第28練》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)復(fù)習(xí)大二輪精準(zhǔn)提分練習(xí)第二篇 第28練(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 第28練 導(dǎo)數(shù)的綜合應(yīng)用[壓軸大題突破練] [明晰考情] 1.命題角度:函數(shù)與方程、不等式的交匯是考查的熱點(diǎn),常以指數(shù)函數(shù)、對(duì)數(shù)函數(shù)為載體考查函數(shù)的零點(diǎn)(方程的根)、比較大小、不等式證明、不等式恒成立與能成立問(wèn)題.2.題目難度:偏難題. 考點(diǎn)一 利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)(方程的根) 方法技巧 求解函數(shù)零點(diǎn)(方程根)的個(gè)數(shù)問(wèn)題的基本思路 (1)轉(zhuǎn)化為函數(shù)的圖象與x軸(或直線y=k)在該區(qū)間上的交點(diǎn)問(wèn)題. (2)利用導(dǎo)數(shù)研究該函數(shù)在該區(qū)間上單調(diào)性、極值(最值)、端點(diǎn)值等性質(zhì),進(jìn)而畫(huà)出其圖象. (3)結(jié)合圖象求解. 1.設(shè)函數(shù)f(x)=x3+ax2+bx+c. (1)求曲線y=

2、f(x)在點(diǎn)(0,f(0))處的切線方程; (2)設(shè)a=b=4,若函數(shù)f(x)有三個(gè)不同零點(diǎn),求c的取值范圍. 解 (1)由f(x)=x3+ax2+bx+c, 得f′(x)=3x2+2ax+b. ∵f(0)=c,f′(0)=b, ∴曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=bx+c. (2)當(dāng)a=b=4時(shí),f(x)=x3+4x2+4x+c, ∴f′(x)=3x2+8x+4. 令f′(x)=0,得3x2+8x+4=0, 解得x=-2或x=-. 當(dāng)x變化時(shí),f(x)與f′(x)在區(qū)間(-∞,+∞)上的變化情況如下: x (-∞,-2) -2 - f

3、′(x) + 0 - 0 + f(x) ↗ c ↘ c- ↗ ∴當(dāng)c>0且c-<0時(shí),f(-4)=c-16<0,f(0)=c>0,存在x1∈(-4,-2),x2∈,x3∈,使得f(x1)=f(x2)=f(x3)=0. 由f(x)的單調(diào)性知,當(dāng)且僅當(dāng)c∈時(shí),函數(shù)f(x)=x3+4x2+4x+c有三個(gè)不同零點(diǎn). 2.(2018·咸陽(yáng)模擬)已知函數(shù)f(x)=-2ln x(a∈R,a≠0). (1)討論函數(shù)f(x)的單調(diào)性; (2)若函數(shù)f(x)有最小值,記為g(a),關(guān)于a的方程g(a)+a--1=m有三個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍. 解 (1)f′(x

4、)=-(x>0), 當(dāng)a<0時(shí),f′(x)<0,則f(x)在(0,+∞)上單調(diào)遞減; 當(dāng)a>0時(shí),f′(x)=, 則f(x)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增. (2)由(1)知, a>0,f(x)min=f()=1-ln a,即g(a)=1-ln a, 方程g(a)+a--1=m,即m=a-ln a-(a>0), 令F(a)=a-ln a-(a>0),則F′(a)=1-+=, 知F(a)在和上單調(diào)遞增,在上單調(diào)遞減, F(a)極大值=F=-+ln 3,F(xiàn)(a)極小值=F=-ln 2+ln 3. 依題意得實(shí)數(shù)m的取值范圍是. 3.已知a∈R,函數(shù)f(x)=ex-a

5、x(e=2.718 28…是自然對(duì)數(shù)的底數(shù)). (1)若函數(shù)f(x)在區(qū)間(-e,-1)上是減函數(shù),求實(shí)數(shù)a的取值范圍; (2)若函數(shù)F(x)=f(x)-(ex-2ax+2ln x+a)在區(qū)間內(nèi)無(wú)零點(diǎn),求實(shí)數(shù)a的最大值. 解 (1)由f(x)=ex-ax,得f′(x)=ex-a且f′(x)在R上單調(diào)遞增. 若f(x)在區(qū)間(-e,-1)上是減函數(shù),只需f′(x)≤0在(-e,-1)上恒成立. 因此只需f′(-1)=e-1-a≤0,解得a≥. 又當(dāng)a=時(shí),f′(x)=ex-≤0,當(dāng)且僅當(dāng)x=-1時(shí)取等號(hào). 所以實(shí)數(shù)a的取值范圍是. (2)由已知得F(x)=a(x-1)-2ln x

6、,且F(1)=0, 則F′(x)=a-==,x>0. ①當(dāng)a≤0時(shí),F(xiàn)′(x)<0,F(xiàn)(x)在區(qū)間(0,+∞)上單調(diào)遞減, 結(jié)合F(1)=0知,當(dāng)x∈時(shí),F(xiàn)(x)>0. 所以F(x)在內(nèi)無(wú)零點(diǎn). ②當(dāng)a>0時(shí),令F′(x)=0,得x=. 若≥,即a∈(0,4]時(shí), F(x)在上是減函數(shù). 又x→0時(shí),F(xiàn)(x)→+∞. 要使F(x)在內(nèi)無(wú)零點(diǎn),只需F=--2ln≥0,則04時(shí),則F(x)在上是減函數(shù),在上是增函數(shù). 所以F(x)min=F=2-a-2ln, 令φ(a)=2-a-2ln, 則φ′(a)=-1+=<0. 所以φ(a)在(4,

7、+∞)上是減函數(shù), 則φ(a)<φ(4)=2ln 2-2<0. 因此F<0,所以F(x)在x∈內(nèi)一定有零點(diǎn),不合題意,舍去. 綜上,函數(shù)F(x)在內(nèi)無(wú)零點(diǎn),應(yīng)有a≤4ln 2,所以實(shí)數(shù)a的最大值為4ln 2. 考點(diǎn)二 利用導(dǎo)數(shù)證明不等式問(wèn)題 方法技巧 利用導(dǎo)數(shù)證明不等式f(x)>g(x)在區(qū)間D上恒成立的基本方法是構(gòu)造函數(shù)h(x)=f(x)-g(x),然后根據(jù)函數(shù)的單調(diào)性或者函數(shù)的最值證明函數(shù)h(x)>0.其中找到函數(shù)h(x)=f(x)-g(x)的零點(diǎn)是解題的突破口. 4.設(shè)函數(shù)f(x)=ln x-x+1. (1)討論函數(shù)f(x)的單調(diào)性; (2)證明:當(dāng)x∈(1,+∞)時(shí),1

8、<0),得f′(x)=-1. 令f′(x)=0,解得x=1. 當(dāng)00,f(x)單調(diào)遞增; 當(dāng)x>1時(shí),f′(x)<0,f(x)單調(diào)遞減. 因此,f(x)在(0,1)上為增函數(shù),在(1,+∞)上為減函數(shù). (2)證明 當(dāng)x∈(1,+∞)時(shí),1<1時(shí),f′(x)<0恒成立,即f(x)在(1,+∞)上單調(diào)遞減,可得f(x)1, 則F′(x)=1+ln x-1=ln

9、x, 當(dāng)x>1時(shí),F(xiàn)′(x)>0,可得F(x)在(1,+∞)上單調(diào)遞增, 即有F(x)>F(1)=0, 即有xln x>x-1.綜上,原不等式得證. 5.(2018·全國(guó)Ⅰ)已知函數(shù)f(x)=-x+aln x. (1)討論f(x)的單調(diào)性; (2)若f(x)存在兩個(gè)極值點(diǎn)x1,x2, 證明:<a-2. (1)解 f(x)的定義域?yàn)?0,+∞), f′(x)=--1+=-. ①若a≤2,則f′(x)≤0,當(dāng)且僅當(dāng)a=2,x=1時(shí),f′(x)=0, 所以f(x)在(0,+∞)上單調(diào)遞減. ②若a>2,令f′(x)=0,得 x=或x=. 當(dāng)x∈∪時(shí),f′(x)<0; 當(dāng)

10、x∈時(shí),f′(x)>0. 所以f(x)在,上單調(diào)遞減,在上單調(diào)遞增. (2)證明 由(1)知,f(x)存在兩個(gè)極值點(diǎn)當(dāng)且僅當(dāng)a>2. 由于f(x)的兩個(gè)極值點(diǎn)x1,x2滿足x2-ax+1=0, 所以x1x2=1,不妨設(shè)x1<x2,則x2>1. 由于=--1+a =-2+a=-2+a, 所以<a-2等價(jià)于-x2+2ln x2<0. 設(shè)函數(shù)g(x)=-x+2ln x, 由(1)知,g(x)在(0,+∞)上單調(diào)遞減. 又g(1)=0,從而當(dāng)x∈(1,+∞)時(shí),g(x)<0. 所以-x2+2ln x2<0,即<a-2. 6.設(shè)函數(shù)f(x)=e2x-aln x. (1)討論f(

11、x)的導(dǎo)函數(shù)f′(x)零點(diǎn)的個(gè)數(shù); (2)證明:當(dāng)a>0時(shí),f(x)≥2a+aln. (1)解 f(x)的定義域?yàn)?0,+∞), f′(x)=2e2x-(x>0). 當(dāng)a≤0時(shí),f′(x)>0,f′(x)沒(méi)有零點(diǎn); 當(dāng)a>0時(shí),設(shè)u(x)=e2x,v(x)=-, 因?yàn)閡(x)=e2x在(0,+∞)上單調(diào)遞增,v(x)=- 在(0,+∞)上單調(diào)遞增,所以f′(x)在(0,+∞)上單調(diào)遞增. 又f′(a)>0,當(dāng)b滿足00時(shí),f′(x)存在唯一零點(diǎn). (2)證明 由(1),可設(shè)f′(x)在(0,+∞)上的唯一零點(diǎn)為x0,當(dāng)x∈(0,x0

12、)時(shí),f′(x)<0; 當(dāng)x∈(x0,+∞)時(shí),f′(x)>0. 故f(x)在(0,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增, 所以當(dāng)x=x0時(shí),f(x)取得最小值,最小值為f(x0). 由于-=0, 所以f(x0)=-aln x0=+2ax0-2ax0-aln x0=+2ax0+aln≥2a+aln. 當(dāng)且僅當(dāng)x0=時(shí),取等號(hào). 故當(dāng)a>0時(shí),f(x)≥2a+aln. 考點(diǎn)三 不等式恒成立或有解問(wèn)題 方法技巧 不等式恒成立、能成立問(wèn)題常用解法 (1)分離參數(shù)后轉(zhuǎn)化為求最值,不等式恒成立問(wèn)題在變量與參數(shù)易于分離的情況下,采用分離參數(shù)轉(zhuǎn)化為函數(shù)的最值問(wèn)題,形如a>f(x)

13、max或a

14、)在(0,1)上單調(diào)遞減. 若f(x)在(0,1)上單調(diào)遞增,則f′(1)≥0,即a≥e; 若f(x)在(0,1)上單調(diào)遞減,則f′(0)≤0,即a≤-1. 綜上可知,a的取值范圍為(-∞,-1]∪[e,+∞). (2)由題意知,y=f(x)+exln x =ex>0恒成立, 令g(x)=-x++ln x(x>0), g′(x)=, 令t(x)=ex-1-x,t′(x)=ex-1-1,當(dāng)x>1時(shí),t′(x)>0,t(x)單調(diào)遞增,當(dāng)0

15、(x)單調(diào)遞減,∴g(x)≥g(1)=, 結(jié)合題意,知a>0,故a的最小整數(shù)解為1. 8.已知函數(shù)f(x)=ln x. (1)若函數(shù)g(x)=f(x)-ax+x2有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍; (2)若關(guān)于x的方程f(x)=m(x+1)(m∈Z)有實(shí)數(shù)解,求整數(shù)m的最大值. 解 (1)g(x)=ln x-ax+x2(x>0), 則g′(x)=, 由題意得方程x2-ax+1=0有兩個(gè)不等的正實(shí)數(shù)根,設(shè)兩根為x1,x2, 則即a的取值范圍為(2,+∞). (2)方程ln x=m(x+1),即m=, 設(shè)h(x)=(x>0),則h′(x)=, 令φ(x)=-ln x(x>0

16、),則φ′(x)=--<0, φ(x)在(0,+∞)上單調(diào)遞減,h′(e)=>0, h′(e2)=<0, 存在x0∈(e,e2),使得h′(x0)=0,即=ln x0, 當(dāng)x∈(0,x0)時(shí),h′(x)>0,h(x)單調(diào)遞增;當(dāng)x∈(x0,+∞)時(shí),h′(x)<0,h(x)單調(diào)遞減, ∴h(x)max==∈, 即m≤h(x)max(m∈Z), 故m≤0,經(jīng)檢驗(yàn)當(dāng)m=0時(shí)滿足題意,∴整數(shù)m的最大值為0. 9.已知函數(shù)f(x)=x-(a+1)ln x-(a∈R),g(x)=x2+ex-xex. (1)當(dāng)x∈[1,e]時(shí),求f(x)的最小值; (2)當(dāng)a<1時(shí),若存在x1∈[e

17、,e2],使得對(duì)任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求a的取值范圍. 解 (1)f(x)的定義域?yàn)?0,+∞),f′(x)=. ①若a≤1,當(dāng)x∈[1,e]時(shí),f′(x)≥0, 則f(x)在[1,e]上為增函數(shù),f(x)min=f(1)=1-a. ②若1<a<e, 當(dāng)x∈[1,a]時(shí),f′(x)≤0,f(x)為減函數(shù); 當(dāng)x∈[a,e]時(shí),f′(x)≥0,f(x)為增函數(shù). 所以f(x)min=f(a)=a-(a+1)ln a-1. ③若a≥e,當(dāng)x∈[1,e]時(shí),f′(x)≤0,f(x)在[1,e]上為減函數(shù), f(x)min=f(e)=e-(a+1)-

18、. 綜上,當(dāng)a≤1時(shí),f(x)min=1-a; 當(dāng)1<a<e時(shí),f(x)min=a-(a+1)ln a-1; 當(dāng)a≥e時(shí),f(x)min=e-(a+1)-. (2)由題意知,f(x)(x∈[e,e2])的最小值小于g(x)(x∈[-2,0])的最小值. 由(1)知,f(x)在[e,e2]上單調(diào)遞增, f(x)min=f(e)=e-(a+1)-. g′(x)=(1-ex)x. 當(dāng)x∈[-2,0]時(shí),g′(x)≤0,g(x)為減函數(shù), g(x)min=g(0)=1, 所以e-(a+1)-<1, 即a>,所以a的取值范圍為. 典例 (12分)已知函數(shù)f(x)=ln x

19、-mx+m,m∈R. (1)求函數(shù)f(x)的單調(diào)區(qū)間; (2)若f(x)≤0在x∈(0,+∞)上恒成立,求實(shí)數(shù)m的值; (3)在(2)的條件下,對(duì)任意的0<a<b,求證:<. 審題路線圖 (1)―→―→ (2)―→―→―→―→ (3)―→ 規(guī)范解答·評(píng)分標(biāo)準(zhǔn) (1)解 f′(x)=-m=(x∈(0,+∞)). 當(dāng)m≤0時(shí),f′(x)>0恒成立,則函數(shù)f(x)在(0,+∞)上單調(diào)遞增; 當(dāng)m>0時(shí),由f′(x)=-m=>0, 可得x∈,則f(x)在上單調(diào)遞增, 由f′(x)=-m=<0,可得x∈, 則f(x)在上單調(diào)遞減. …………………………………………………………

20、…4分 (2)解 由(1)知,當(dāng)m≤0時(shí)顯然不成立; 當(dāng)m>0時(shí),f(x)max=f=ln -1+m =m-ln m-1, 只需m-ln m-1≤0即可,令g(x)=x-ln x-1, 則g′(x)=1-, 函數(shù)g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,所以g(x)min=g(1)=0. 故f(x)≤0在x∈(0,+∞)上恒成立時(shí),m=1.………………………………………………8分 (3)證明?。剑剑?=·-1, 由0<a<b,得>1,由(2)得0

21、 構(gòu)建答題模板 [第一步] 求導(dǎo)數(shù). [第二步] 看性質(zhì):根據(jù)導(dǎo)數(shù)討論函數(shù)的單調(diào)性、極值、最值等性質(zhì). [第三步] 用性質(zhì):將題中條件或要證結(jié)論轉(zhuǎn)化,如果成立或有解問(wèn)題可轉(zhuǎn)化為函數(shù)的最值,證明不等式可利用函數(shù)單調(diào)性和放縮法. [第四步] 得結(jié)論:審視轉(zhuǎn)化過(guò)程的合理性. [第五步] 再反思:回顧反思,檢查易錯(cuò)點(diǎn)和步驟規(guī)范性. 1.設(shè)函數(shù)f(x)=x2-mln x,g(x)=x2-(m+1)x,m>0. (1)求函數(shù)f(x)的單調(diào)區(qū)間; (2)當(dāng)m≥1時(shí),討論函數(shù)f(x)與g(x)圖象的交點(diǎn)個(gè)數(shù). 解 (1)函數(shù)f(x)的定義域?yàn)?0,+∞), f′(x)=. 當(dāng)

22、0<x<時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減, 當(dāng)x>時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增. 綜上可知,函數(shù)f(x)的單調(diào)遞增區(qū)間是[,+∞),單調(diào)遞減區(qū)間是(0,]. (2)令F(x)=f(x)-g(x) =-x2+(m+1)x-mln x,x>0, 問(wèn)題等價(jià)于求函數(shù)F(x)的零點(diǎn)個(gè)數(shù). F′(x)=-, 當(dāng)m=1時(shí),F(xiàn)′(x)≤0,函數(shù)F(x)為減函數(shù), 注意到F(1)=>0,F(xiàn)(4)=-ln 4<0, 所以F(x)有唯一零點(diǎn). 當(dāng)m>1時(shí),若0<x<1或x>m,則F′(x)<0; 若1<x<m,則F′(x)>0, 所以函數(shù)F(x)在(0,1)和(m,+∞)

23、上單調(diào)遞減,在(1,m)上單調(diào)遞增, 注意到F(1)=m+>0,F(xiàn)(2m+2)=-mln(2m+2)<0, 所以F(x)有唯一零點(diǎn). 綜上,函數(shù)F(x)有唯一零點(diǎn),即兩函數(shù)圖象總有一個(gè)交點(diǎn). 2.(2017·全國(guó)Ⅲ)已知函數(shù)f(x)=ln x+ax2+(2a+1)x. (1)討論f(x)的單調(diào)性; (2)當(dāng)a<0時(shí),證明f(x)≤--2. (1)解 f(x)的定義域?yàn)?0,+∞), f′(x)=+2ax+2a+1=. 若a≥0,則當(dāng)x∈(0,+∞)時(shí),f′(x)>0, 故f(x)在(0,+∞)上單調(diào)遞增. 若a<0,則當(dāng)x∈時(shí),f′(x)>0; 當(dāng)x∈時(shí),f′(x)<0

24、. 故f(x)在上單調(diào)遞增,在上單調(diào)遞減. 綜上,當(dāng)a≥0,f(x)在(0,+∞)上單調(diào)遞增;當(dāng)a<0時(shí),f(x)在上單調(diào)遞增,在上單調(diào)遞減. (2)證明 由(1)知,當(dāng)a<0時(shí),f(x)在x=-處取得最大值,最大值為f=ln-1-, 所以f(x)≤--2等價(jià)于ln-1-≤--2, 即ln++1≤0. 設(shè)g(x)=ln x-x+1(x>0), 則g′(x)=-1. 當(dāng)x∈(0,1)時(shí),g′(x)>0; 當(dāng)x∈(1,+∞)時(shí),g′(x)<0. 所以g(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減. 故當(dāng)x=1時(shí),g(x)取得最大值,最大值為g(1)=0. 所以當(dāng)x

25、>0時(shí),g(x)≤0. 從而當(dāng)a<0時(shí),ln++1≤0, 即f(x)≤--2. 3.已知函數(shù)f(x)=-ln x. (1)求f(x)的單調(diào)區(qū)間; (2)求函數(shù)f(x)在上的最大值和最小值(其中e是自然對(duì)數(shù)的底數(shù)); (3)求證:ln≤. (1)解 f(x)=-ln x=1--ln x, f(x)的定義域?yàn)?0,+∞). ∵f′(x)=-=, 由f′(x)>0,得01, ∴f(x)=1--ln x在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減. ∴f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞). (2)解 由(1)得f

26、(x)在上單調(diào)遞增,在(1,e]上單調(diào)遞減, ∴f(x)在上的最大值為f(1)=1--ln 1=0. 又f=1-e-ln=2-e,f(e)=1--ln e=-,且f

27、)已知函數(shù)f(x)=a+bln x(其中a,b∈R). (1)當(dāng)b=-4時(shí),若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍; (2)當(dāng)a=-1時(shí),是否存在實(shí)數(shù)b,使得當(dāng)x∈時(shí),不等式f(x)>0恒成立,如果存在,求b的取值范圍,如果不存在,請(qǐng)說(shuō)明理由. 解 (1)函數(shù)f(x)的定義域是(0,+∞),當(dāng)b=-4時(shí), f′(x)=. 若f(x)在其定義域內(nèi)單調(diào)遞增,則a≥=. ∵max=1,∴a≥1; 若f(x)在其定義域內(nèi)單調(diào)遞減,則a≤=, ∵min在x+→+∞時(shí)取得,即→0. ∴a≤0. 綜上,a≤0或a≥1. (2)f(x)=-+bln x>0在x∈[e,e2]上恒

28、成立, 令y=ln x-,x∈[e,e2],y′=+>0,函數(shù)y=ln x-在x∈[e,e2]上單調(diào)遞增,故當(dāng)x=e時(shí),y取最小值1->0,故y=ln x->0在x∈[e,e2]上恒成立, 故問(wèn)題轉(zhuǎn)化為b>在x∈[e,e2]上恒成立, 令h(x)=,x∈[e,e2],h′(x)=, 令m(x)=ln x--1,x∈[e,e2],m′(x)=+>0, 而m(e)<0,m(e2)>0, 故存在x0∈[e,e2],使得h(x)在[e,x0)上單調(diào)遞減,在(x0,e2]上單調(diào)遞增, ∴h(x)max=h(e2)或h(e), ∵h(yuǎn)(e2)=. 綜上,存在b滿足題意,此時(shí)b∈.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲