新版一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第二章 第十一節(jié) 第一課時(shí) 函數(shù)的導(dǎo)數(shù)與單調(diào)性 Word版含解析
《新版一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第二章 第十一節(jié) 第一課時(shí) 函數(shù)的導(dǎo)數(shù)與單調(diào)性 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第二章 第十一節(jié) 第一課時(shí) 函數(shù)的導(dǎo)數(shù)與單調(diào)性 Word版含解析(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 1
2、 1
課時(shí)規(guī)范練
A組 基礎(chǔ)對(duì)點(diǎn)練
1.函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象是如圖所示的一條直線l,l與x軸的交點(diǎn)坐標(biāo)為(1,0),則f(0)與f(3)的大小關(guān)系為( )
A.f(0)
3、 答案:B 2.已知函數(shù)y=f(x)的圖象是下列四個(gè)圖象之一,且其導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則該函數(shù)的圖象是( ) 解析:在(-1,0)上f′(x)單調(diào)遞增,所以f(x)圖象的切線斜率呈遞增趨勢(shì);在(0,1)上f′(x)單調(diào)遞減,所以f(x)圖象的切線斜率呈遞減趨勢(shì).故選B. 答案:B 3.若函數(shù)f(x)=kx-ln x在區(qū)間(1,+∞)單調(diào)遞增,則k的取值范圍是( ) A.(-∞,-2] B.(-∞,-1] C.[2,+∞) D.[1,+∞) 解析:依題意得f′(x)=k-≥0在(1,+∞)上恒成立,即k≥在(1,+∞)上恒成立,∵x>1,∴0<<
4、1,∴k≥1,故選D. 答案:D 4.(20xx·遼寧大連高三雙基測(cè)試)已知函數(shù)f(x)=ex-2x-1(其中e為自然對(duì)數(shù)的底數(shù)),則y=f(x)的圖象大致為( ) 解析:依題意得f′(x)=ex-2.當(dāng)x<ln 2時(shí), f′(x)<0,f(x)是減函數(shù),f(x)>f(ln 2)=1-2ln 2;當(dāng)x>ln 2時(shí),f′(x)>0,f(x)是增函數(shù),因此對(duì)照各選項(xiàng)知選C. 答案:C 5.已知函數(shù)f(x)=ex-(x+1)2(e為2.718 28…),則f(x)的大致圖象是( ) 解析:對(duì)f(x)=ex-(x+1)2求導(dǎo)得f′(x)=ex-2x-2,顯然x→+∞時(shí),導(dǎo)函數(shù)
5、f′(x)>0,函數(shù)f(x)是增函數(shù),排除A,D;x=-1時(shí),f′(-1)≠0,所以x=-1不是函數(shù)的極值點(diǎn),排除B,故選C. 答案:C 6.(20xx·江淮十校聯(lián)考)設(shè)函數(shù)f(x)=x2-9ln x在區(qū)間[a-1,a+1]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( ) A.1
6、f(e)>f(3) B.f(3)>f(e)>f(2) C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2) 解析:f(x)的定義域是(0,+∞), f′(x)=,令f′(x)=0,得x=e. ∴當(dāng)x∈(0,e)時(shí),f′(x)>0,f(x)單調(diào)遞增,當(dāng)x∈(e,+∞)時(shí),f′(x)<0,f(x)單調(diào)遞減,故x=e時(shí),f(x)max=f(e)=,而f(2)==,f(3)==,所以f(e)>f(3)>f(2),故選D. 答案:D 8.(20xx·四川成都模擬)f(x)是定義域?yàn)镽的函數(shù),對(duì)任意實(shí)數(shù)x都有f(x)=f(2-x)成立.若當(dāng)x≠1時(shí),不等式(x-1)·f′(x
7、)<0成立,若a=f(0.5),b=f,c=f(3),則a,b,c的大小關(guān)系是( ) A.b>a>c B.a(chǎn)>b>c C.c>b>a D.a(chǎn)>c>b 解析:因?yàn)閷?duì)任意實(shí)數(shù)x都有f(x)=f(2-x)成立,所以函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱,又因?yàn)楫?dāng)x≠1時(shí),不等式(x-1)·f′(x)<0成立,所以函數(shù)f(x)在(1,+∞)上單調(diào)遞減,所以f>f(0.5)=f>f(3),即b>a>c. 答案:A 9.(20xx·九江模擬)已知函數(shù)f(x)=x2+2ax-ln x,若f(x)在區(qū)間上是增函數(shù),則實(shí)數(shù)a的取值范圍為_(kāi)_______. 解析:由題意知f′(x)=x+2a-≥0
8、在上恒成立,即2a≥-x+在上恒成立, ∵max=,∴2a≥,即a≥. 答案: 10.設(shè)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-2)=0,當(dāng)x>0時(shí),xf′(x)-f(x)>0,則使得f(x)>0成立的x的取值范圍是________. 解析:令g(x)=,則g′(x)=, ∴當(dāng)x>0時(shí),g′(x)>0,即g(x)在(0,+∞)上單調(diào)遞增,∵f(x)為奇函數(shù),f(-2)=0,∴f(2)=0,∴g(2)==0,結(jié)合奇函數(shù)f(x)的圖象知,f(x)>0的解集為(-2,0)∪(2,+∞),故填(-2,0)∪(2,+∞). 答案:(-2,0)∪(2,+∞) 11.(20xx·荊
9、州質(zhì)檢)設(shè)函數(shù)f(x)=x3-x2+bx+c,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=1. (1)求b,c的值; (2)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間. 解析:(1)f′(x)=x2-ax+b, 由題意得即 (2)由(1)得,f′(x)=x2-ax=x(x-a)(a>0), 當(dāng)x∈(-∞,0)時(shí),f′(x)>0; 當(dāng)x∈(0,a)時(shí),f′(x)<0; 當(dāng)x∈(a,+∞)時(shí),f′(x)>0. 所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0),(a,+∞),單調(diào)遞減區(qū)間為(0,a). 12.已知函數(shù)f(x)=exln x-aex(a∈R). (1)若f(x)在點(diǎn)
10、(1,f(1))處的切線與直線y=x+1垂直,求a的值;
(2)若f(x)在(0,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
解析:(1)f′(x)=exln x+ex·-aex=ex,
f′(1)=(1-a)e,由(1-a)e·=-1,
得a=2.
(2)由(1)知f′(x)=ex,
若f(x)為單調(diào)遞減函數(shù),則f′(x)≤0在x>0時(shí)恒成立.
即-a+ln x≤0在x>0時(shí)恒成立.
所以a≥+ln x在x>0時(shí)恒成立.
令g(x)=+ln x(x>0),
則g′(x)=-+=(x>0),
由g′(x)>0,得x>1;
由g′(x)<0,得0 11、0,1)上為單調(diào)遞減函數(shù),在(1,+∞)上為單調(diào)遞增函數(shù),此時(shí)g(x)的最小值為g(1)=1,但g(x)無(wú)最大值(且無(wú)趨近值).
故f(x)不可能是單調(diào)遞減函數(shù).
若f(x)為單調(diào)遞增函數(shù),
則f′(x)≥0在x>0時(shí)恒成立,
即-a+ln x≥0在x>0時(shí)恒成立,
所以a≤+ln x在x>0時(shí)恒成立,由上述推理可知此時(shí)a≤1.
故實(shí)數(shù)a的取值范圍是(-∞,1].
B組 能力提升練
1.已知x∈(0,2),若關(guān)于x的不等式<恒成立,則實(shí)數(shù)k的取值范圍為( )
A.[0,e+1) B.[0,2e-1)
C.[0,e) D.[0,e-1)
解析:依題意,知k+2x-x2 12、>0,即k>x2-2x對(duì)任意x∈(0,2)恒成立,從而k≥0,所以由<可得k<+x2-2x.令f(x)=+x2-2x.則f′(x)=+2(x-1)=(x-1).
令f′(x)=0,得x=1,當(dāng)x∈(1,2)時(shí),f′(x)>0,函數(shù)f(x)在(1,2)上單調(diào)遞增,當(dāng)x∈(0,1)時(shí),f′(x)<0,函數(shù)f(x)在(0,1)上單調(diào)遞減,所以k<f(x)min=f(1)=e-1,故實(shí)數(shù)k的取值范圍是[0,e-1).
答案:D
2.已知函數(shù)f(x)=ax2+bx-ln x(a>0,b∈R),若對(duì)任意x>0,f (x)≥f(1),則( )
A.ln a<-2b B.ln a≤-2b
C.l 13、n a>-2b D.ln a≥-2b
解析:f′(x)=2ax+b-,由題意可知f′(1)=0,即2a+b=1,由選項(xiàng)可知,只需比較ln a+2b與0的大小,而b=1-2a,所以只需判斷l(xiāng)n a+2-4a的符號(hào).構(gòu)造一個(gè)新函數(shù)g(x)=2-4x+ln x,則g′(x)=-4,令g′(x)=0,得x=,當(dāng)x<時(shí),g(x)為增函數(shù),當(dāng)x>時(shí),g(x)為減函數(shù),所以對(duì)任意x>0有g(shù)(x)≤g=1-ln 4<0,所以有g(shù)(a)=2-4a+ln a=2b+ln a<0?ln a<-2b,故選A.
答案:A
3.已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)= 14、0.現(xiàn)給出如下結(jié)論:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.
其中正確結(jié)論的序號(hào)是( )
A.①③ B.①④
C.②③ D.②④
解析:∵f′(x)=3x2-12x+9=3(x-1)(x-3).由f′(x)<0,得1<x<3,由f′(x)>0,得x<1或x>3,
∴f(x)在區(qū)間(1,3)上是減函數(shù),在區(qū)間(-∞,1),(3,+∞)上是增函數(shù).
又a<b<c,f(a)=f(b)=f(c)=0,
∴y極大值=f(1)=4-abc>0,y極小值=f(3)=-abc<0,∴0<abc<4.
∴a,b,c均大于零,或者a<0 15、,b<0,c>0.
又x=1,x=3為函數(shù)f(x)的極值點(diǎn),后一種情況不可能成立,如圖.
∴f(0)<0,∴f(0)f(1)<0,f(0)f(3)>0,∴正確結(jié)論的序號(hào)是②③.
答案:C
4.已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0>0,則a的取值范圍是( )
A.(2,+∞) B.(-∞,-2)
C.(1,+∞) D.(-∞,-1)
解析:當(dāng)a=0時(shí),顯然f(x)有兩個(gè)零點(diǎn),不符合題意.
當(dāng)a≠0時(shí),f′(x)=3ax2-6x,令f′(x)=0,解得x1=0,x2=.
當(dāng)a>0時(shí),>0,所以函數(shù)f(x)=a x3-3x2+1在(- 16、∞,0)與上為增函數(shù),在上為減函數(shù),因?yàn)閒(x)存在唯一零點(diǎn)x0,且x0>0,則f(0)<0,即1<0,不成立.
當(dāng)a<0時(shí),<0,所以函數(shù)f(x)=ax3-3x2+1在和(0,+∞)上為減函數(shù),在上為增函數(shù),因?yàn)閒(x)存在唯一零點(diǎn)x0,且x0>0,則f>0,即a·-3·+1>0,解得a>2或a<-2,又因?yàn)閍<0,故a的取值范圍為(-∞,-2).選B.
答案:B
5.已知函數(shù)f(x)=ln x-ax2+x有兩個(gè)不同零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(0,1) B.(-∞,1)
C. D.
解析:令g(x)=ln x,h(x)=ax2-x,
將問(wèn)題轉(zhuǎn)化為兩個(gè)函數(shù)圖象交 17、點(diǎn)的問(wèn)題.
當(dāng)a≤0時(shí),g(x)和h(x)的圖象只有一個(gè)交點(diǎn),不滿足題意;
當(dāng)a>0時(shí),由ln x-ax2+x=0,得a=.
令r(x)=,則r′(x)==,
當(dāng)0<x<1時(shí),r′(x)>0,r(x)是單調(diào)增函數(shù),
當(dāng)x>1時(shí),r′(x)<0,r(x)是單調(diào)減函數(shù),且>0,∴0<a<1.
∴a的取值范圍是(0,1).故選A.
答案:A
6.已知函數(shù)f(x)=-x2-3x+4ln x在(t,t+1)上不單調(diào),則實(shí)數(shù)t的取值范圍是________.
解析:∵函數(shù)f(x)=-x2-3x+4ln x(x>0),
∴f′(x)=-x-3+,
∵函數(shù)f(x)=-x2-3x+4ln x 18、在(t,t+1)上不單調(diào),
∴f′(x)=-x-3+=0在(t,t+1)上有解,
∴=0在(t,t+1)上有解,
∴x2+3x-4=0在(t,t+1)上有解,由x2+3x-4=0得x=1或x=-4(舍去),
∴1∈(t,t+1),∴t∈(0,1),故實(shí)數(shù)t的取值范圍是(0,1).
答案:(0,1)
7.已知y=f(x)為R上的連續(xù)可導(dǎo)函數(shù),且xf′(x)+f(x)>0,則函數(shù)g(x)=xf(x)+1(x>0)的零點(diǎn)個(gè)數(shù)為_(kāi)_______.
解析:因?yàn)間(x)=xf(x)+1(x>0),g′(x)=xf′(x)+f(x)>0,所以g(x)在(0,+∞)上單調(diào)遞增,又g(0)=1,y 19、=f(x)為R上的連續(xù)可導(dǎo)函數(shù),所以g(x)為(0,+∞)上的連續(xù)可導(dǎo)函數(shù),又g(x)>g(0)=1,所以g(x)在(0,+∞)上無(wú)零點(diǎn).
答案:0
8.已知函數(shù)g(x)滿足g(x)=g′(1)ex-1-g(0)x+x2,且存在實(shí)數(shù)x0使得不等式2m-1≥g(x0)成立,則m的取值范圍為_(kāi)_________.
解析:g′(x)=g′(1)ex-1-g(0)+x,當(dāng)x=1時(shí),g(0)=1,由g(0)=g′(1)e0-1,解得g′(1)=e,所以g(x)=ex-x+x2,則g′(x)=ex-1+x,當(dāng)x<0時(shí),g′(x)<0,當(dāng)x>0時(shí),g′(x)>0,所以當(dāng)x=0時(shí),函數(shù)g(x)取得最小值 20、g(0)=1,根據(jù)題意將不等式轉(zhuǎn)化為2m-1≥g(x)min=1,所以m≥1.
答案:[1,+∞)
9.已知函數(shù)f(x)=x2-(2t+1)x+tln x(t∈R).
(1)若t=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程以及f(x)的極值;
(2)設(shè)函數(shù)g(x)=(1-t)x,若存在x0∈[1,e],使得f(x0)≥g(x0)成立,求實(shí)數(shù)t的最大值.
解析:(1)依題意,函數(shù)f(x)的定義域?yàn)?0,+∞),
當(dāng)t=1時(shí),f(x)=x2-3x+ln x,f′(x)=2x-3+=.
由f′(1)=0,f(1)=-2,得曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y 21、=-2.
令f′(x)=0,解得x=或x=1,f′(x),f(x)隨x的變化情況如下:
x
1
(1,+∞)
f′(x)
+
0
-
0
+
f(x)
極大值
極小值
由表格知,f(x)極大值=f=-+ln,f(x)極小值=f(1)=-2.
(2)由題意知,不等式f(x)≥g(x)在區(qū)間[1,e]上有解,
即x2-2x+t(ln x-x)≥0在區(qū)間[1,e]上有解.
∵當(dāng)x∈[1,e]時(shí),ln x≤1≤x(不同時(shí)取等號(hào)),∴l(xiāng)n x-x<0,∴t≤在區(qū)間[1,e]上有解.
令h(x)=,則h′(x)=.
∵x∈[1,e],∴x 22、+2>2≥2ln x,∴h′(x)≥0,h(x)單調(diào)遞增,∴x∈[1,e]時(shí),h(x)max=h(e)=.
∴t≤,∴實(shí)數(shù)t的最大值是.
10.已知函數(shù)f(x)=x2+(1-a)x-aln x.
(1)討論f(x)的單調(diào)性;
(2)設(shè)a<0,若對(duì)?x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范圍.
解析:(1)f(x)的定義域?yàn)?0,+∞).
求導(dǎo),得f′(x)=x+1-a-==.
若a≤0,則f′(x)>0,此時(shí)f(x)在(0,+∞)上單調(diào)遞增.
若a>0,則由f′(x)=0,得x=a.當(dāng)0 23、(x)>0.
此時(shí)f(x)在(0,a)上單調(diào)遞減,在(a,+∞)上單調(diào)遞增.
(2)不妨設(shè)x1≤x2,而a<0,由(1)知,f(x)在(0,+∞)上單調(diào)遞增,∴f(x1)≤f(x2).從而對(duì)?x1,x2∈(0,+∞), |f(x1)-f(x2)|≥4|x1-x2|等價(jià)于
對(duì)?x1,x2∈(0,+∞),4x1-f(x1)≥4x2-f(x2).①
令g(x)=4x-f(x),則g′(x)=4-f′(x)=4-=-x+3+a.
①等價(jià)于g(x)在(0,+∞)上單調(diào)遞減,
∴g′(x)=-x+3+a≤0對(duì)?x∈(0,+∞)恒成立,
∴a≤對(duì)?x∈(0,+∞)恒成立,∴a≤min.
又=x+1+-5≥2-5=-1,當(dāng)且僅當(dāng)x+1=,即x=1時(shí),等號(hào)成立.
∴a≤-1.
故a的取值范圍為(-∞,-1].
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會(huì)全文PPT
- 2025年寒假安全教育班會(huì)全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓(xùn)提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機(jī)關(guān)工委2024年度年終黨建工作總結(jié)述職匯報(bào)
- 心肺復(fù)蘇培訓(xùn)(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學(xué)生活介紹
- XX單位2024年終專題組織生活會(huì)理論學(xué)習(xí)理論學(xué)習(xí)強(qiáng)黨性凝心聚力建新功
- 2024年XX單位個(gè)人述職述廉報(bào)告
- 一文解讀2025中央經(jīng)濟(jì)工作會(huì)議精神(使社會(huì)信心有效提振經(jīng)濟(jì)明顯回升)
- 2025職業(yè)生涯規(guī)劃報(bào)告自我評(píng)估職業(yè)探索目標(biāo)設(shè)定發(fā)展策略
- 2024年度XX縣縣委書(shū)記個(gè)人述職報(bào)告及2025年工作計(jì)劃
- 寒假計(jì)劃中學(xué)生寒假計(jì)劃安排表(規(guī)劃好寒假的每個(gè)階段)
- 中央經(jīng)濟(jì)工作會(huì)議九大看點(diǎn)學(xué)思想強(qiáng)黨性重實(shí)踐建新功