《高考數(shù)學(xué)總復(fù)習(xí)(整合考點(diǎn)+典例精析+深化理解)第五章 第一節(jié)數(shù)列的概念與簡單表示法精講課件 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)總復(fù)習(xí)(整合考點(diǎn)+典例精析+深化理解)第五章 第一節(jié)數(shù)列的概念與簡單表示法精講課件 文(23頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第一節(jié)第一節(jié) 數(shù)列的概念與簡單表示法數(shù)列的概念與簡單表示法第五章第五章【例1】求下列數(shù)列的一個(gè)通項(xiàng)公式:(1)1,1,1,1,;(2)3,5,9,17,33,;(3) ,2, ,8, ,; (4)1,0, ,0, ,0, ,0,;(5)5,55,555,5 555,.給出數(shù)列的前幾項(xiàng),求數(shù)列的通項(xiàng)公式思路點(diǎn)撥:思路點(diǎn)撥:解此類問題主要靠觀察(觀察規(guī)律)、比較(比較已知的數(shù)列)、歸納、轉(zhuǎn)化(轉(zhuǎn)化為等差或等比數(shù)列)等方法每一項(xiàng)序號(hào)與這一項(xiàng)的對(duì)應(yīng)關(guān)系可看成是一個(gè)序號(hào)到另一個(gè)數(shù)集的對(duì)應(yīng)關(guān)系,這對(duì)考生的歸納推理能力有較高的要求自主解答:自主解答:解析:解析:(1)an(1)n1或ancos(n1).(2
2、)an2n1. (3)an .點(diǎn)評(píng):點(diǎn)評(píng):已知數(shù)列的前幾項(xiàng),寫出數(shù)列的通項(xiàng)公式,主要從以下幾個(gè)方面來考慮:(1)符號(hào)用(1)n與(1)n1來調(diào)節(jié),這是因?yàn)閚和n1奇偶交錯(cuò)(2)分式形式的數(shù)列,分子找通項(xiàng),分母找通項(xiàng),要充分借助分子、分母的關(guān)系(3)對(duì)于比較復(fù)雜的通項(xiàng)公式,要借助于等差數(shù)列、等比數(shù)列(后面將復(fù)習(xí)到)和其他方法來解決(4)此類問題無固定模式,主要靠觀察(觀察規(guī)律)、比較(比較已知的數(shù)列)、歸納、轉(zhuǎn)化(轉(zhuǎn)化為等差或等比數(shù)列)等方法(1)數(shù)列 的通項(xiàng)公式是an_;(2)數(shù)列10,11,10,11,10,11,的一個(gè)通項(xiàng)公式是an_;(3)數(shù)列1, 的通項(xiàng)公式是an_;(4)數(shù)列1, 的
3、通項(xiàng)公式是an_.變式探究變式探究解析:解析:(1)這是個(gè)混合數(shù)列,可看成 故通項(xiàng)公式an2n (nN)(2)該數(shù)列中各項(xiàng)每兩個(gè)元素重復(fù)一遍,可以利用這個(gè)周期性求an.原數(shù)列可變形為:100,101,100,101,.故其一個(gè)通項(xiàng)為an10 (nN)(3)通項(xiàng)符號(hào)為(1)n,如果把第一項(xiàng)1看作 ,則分母為3,5,7,9,分母通項(xiàng)為2n1;分子為3,8,15,24,分子通項(xiàng)為(n1)21即n(n2),所以原數(shù)列通項(xiàng)為an(1)n (4)奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,故通項(xiàng)公式中含因子(-1)n;各項(xiàng)絕對(duì)值的分母組成數(shù)列1,2,3,4,;而各項(xiàng)絕對(duì)值的分子組成的數(shù)列中,奇數(shù)項(xiàng)為1,偶數(shù)項(xiàng)為3,即奇數(shù)項(xiàng)為
4、21,偶數(shù)項(xiàng)為21,所以an(1)n 答案:(1)2n (2)10【例2】(2012瑞安十校聯(lián)考)若數(shù)列an的通項(xiàng)公式an 記Cn2(1a1)(1a2)(1an),試通過計(jì)算C1,C2,C3的值,推測出Cn_.思路點(diǎn)撥:思路點(diǎn)撥:根據(jù)已知等式寫出前3項(xiàng),注意將C1,C2,C3的結(jié)果寫成相同的結(jié)構(gòu)形式(不要寫成小數(shù)),這樣方便觀察規(guī)律,得出一般表達(dá)式由遞推公式求數(shù)列的前幾項(xiàng),并由此寫出通向公式點(diǎn)評(píng):點(diǎn)評(píng):(1)從特殊的事例,通過分析、歸納,抽象總結(jié)出一般規(guī)律,再進(jìn)行科學(xué)的證明,這是創(chuàng)新意識(shí)的具體體現(xiàn),這種探索問題的方法,在解數(shù)列的有關(guān)問題中經(jīng)常用到,應(yīng)引起足夠的重視(2)對(duì)遞推公式,要求寫出前幾
5、項(xiàng),并猜想其通項(xiàng)公式,此外了解常用的處理辦法,如迭加、迭代、迭乘及變形后結(jié)合等差(比)數(shù)列公式,也是很有必要的(3)求本題數(shù)列的通項(xiàng)公式還可用倒數(shù)法來推導(dǎo),同學(xué)們不妨一試 變式探究變式探究2(1)數(shù)列an中,a11,對(duì)所有n2,都有a1a2a3ann2,則an_.(2)已知數(shù)列an滿足:a11,anan1lg (n2),則數(shù)列an的通項(xiàng)公式是_解析解析:(1)由a1a2a3ann2得a1a2a3an an1(n1)2,所以n2an1(n1)2,得an1 ,n1,把上面各式相加,得ana1lg1lg lg(5n5)答案:(1) (2)anlg(5n5)已知Sn與an的關(guān)系式,求通項(xiàng)公式an【例3
6、】已知各項(xiàng)均為正數(shù)的數(shù)列an的前n項(xiàng)和滿足Sn1,且6Sn(an1)(an2),nN*.求an的通項(xiàng)公式解析:解析:由a1S1 (a11)(a12),解得a11或a12,由題設(shè)知a1S11,因此a12.又由an1Sn1 Sn (an11)(an12) (an1)(an2),得an1 an30或an1an,因an0,故an1an不成立,舍去因此an1 an30,從而an是公差為3,首項(xiàng)為2的等差數(shù)點(diǎn)評(píng):點(diǎn)評(píng):已知an的前n項(xiàng)和Sn,求an時(shí)應(yīng)注意以下三點(diǎn):(1)應(yīng)重視分類討論法的應(yīng)用,分n1和n2兩種情況討論,特別注意anSnSn1中需n2.(2)由SnSn1an推得的an,當(dāng)n1時(shí),a1也適合
7、“an式”,則需統(tǒng)一“合寫”(3)由SnSn1an推得的an,當(dāng)n1時(shí),a1不適合“an式”,則數(shù)列的通項(xiàng)公式應(yīng)分段表示(“分寫”),即an利用Sn與an的關(guān)系求通項(xiàng)是一個(gè)重要內(nèi)容,應(yīng)注意Sn與an間關(guān)系的靈活運(yùn)用列,故an的通項(xiàng)為an3n1(nN*)變式探究變式探究3(1)設(shè)Sn為數(shù)列an的前n項(xiàng)的和,且Sn (an1)(nN *)則數(shù)列an的通項(xiàng)公式an_.(2)(2012衡陽八中月考)正項(xiàng)數(shù)列an滿足a12,(an2)28Sn1(n2),則an的通項(xiàng)公式為an_.解析解析:(1)Sn (an1),當(dāng)n1時(shí),S1a1 (a11)解得a13.當(dāng)n2時(shí),anSnSn1 (an1) (an11)
8、,整理得 3,當(dāng)n2時(shí),數(shù)列an是以3為公比的等比數(shù)列,且首項(xiàng)a23a19.n2時(shí),an93n23n.顯然,當(dāng)n1時(shí)也成立故數(shù)列的通項(xiàng)公式為an3n(nN *)(2)(an2)28Sn1(n2),(an12)28Sn,兩式相減得,8ana2n1a2n4an4an1,整理得,4(an+1+an)(an1an)(an1an)an是正項(xiàng)數(shù)列,an1an4,an是以4為公差,2為首項(xiàng)的等差數(shù)列an24(n1)4n2(nN*)答案:答案:(1)3n(nN*)(2)4n2(nN*)數(shù)列的函數(shù)特征【例4】已知數(shù)列的通項(xiàng)公式為an ,(1)0.98是不是它的項(xiàng)?(2)判斷此數(shù)列的增減性和有界性解析:解析:(1
9、) 0.98,解得n7,所以0.98是此數(shù)列的第7項(xiàng)(2)an1anan1an,故此數(shù)列是遞增數(shù)列;此數(shù)列是有界數(shù)列點(diǎn)評(píng):點(diǎn)評(píng):數(shù)列的函數(shù)特征主要是數(shù)列的單調(diào)性和周期性數(shù)列的單調(diào)性和函數(shù)的單調(diào)性定義有所不同,由于數(shù)列中的自變量是正整數(shù),故數(shù)列an單調(diào)遞增的充要條件是對(duì)任意正整數(shù)anan1,單調(diào)遞減的充要條件是對(duì)任意正整數(shù)an1an. 數(shù)列的周期性是指存在正整數(shù)k(常數(shù)),對(duì)任意正整數(shù)ankak,在給出遞推式關(guān)系的數(shù)列中可以通過計(jì)算數(shù)列的一些項(xiàng)的值,探究其周期性. 所以,數(shù)列的單調(diào)性問題、最值問題、周期問題等具有明顯函數(shù)特征的問題可以用函數(shù)方法解決4(2012浙江名校高考研究聯(lián)盟聯(lián)考)數(shù)列an的前n項(xiàng)和為Sn,則“a20”是“數(shù)列Sn為遞增數(shù)列”的()A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件變式探究解析:解析:a20,不能保證Sn是遞增數(shù)列,如數(shù)列4n的前n項(xiàng)和構(gòu)成的Sn不是遞增數(shù)列;反之,若Sn為遞增數(shù)列,則有S2S1,得a20.所以“a20”是“數(shù)列Sn為遞增數(shù)列”的必要不充分條件故選B.答案:答案:B