【名校資料】高考數(shù)學(xué)理一輪資源庫 第4章學(xué)案16
《【名校資料】高考數(shù)學(xué)理一輪資源庫 第4章學(xué)案16》由會(huì)員分享,可在線閱讀,更多相關(guān)《【名校資料】高考數(shù)學(xué)理一輪資源庫 第4章學(xué)案16(11頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、◆+◆◆二〇一九高考數(shù)學(xué)學(xué)習(xí)資料◆+◆◆ 第4章 三角函數(shù)與三角恒等變換 學(xué)案16 任意角、弧度及任意角的三角函數(shù) 導(dǎo)學(xué)目標(biāo): 1.了解任意角的概念.2.了解弧度制的概念,能進(jìn)行弧度與角度的互化.3.理解任意角的三角函數(shù)(正弦、余弦、正切)的定義. 自主梳理 1.任意角的概念 角可以看成平面內(nèi)一條射線OA繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置OB所成的圖形.旋轉(zhuǎn)開始時(shí)的射線OA叫做角的________,射線的端點(diǎn)O叫做角的________,旋轉(zhuǎn)終止位置的射線OB叫做角的________,按____時(shí)針方向旋轉(zhuǎn)所形成的角叫做正角,按____時(shí)針方向旋轉(zhuǎn)所形成的角叫做負(fù)角.若一條射線沒
2、有作任何旋轉(zhuǎn),稱它形成了一個(gè)____角. (1)象限角 使角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,角的終邊落在第幾象限,就說這個(gè)角是________________角. (2)象限界角(即終邊在坐標(biāo)軸上的角) 終邊在x軸上的角表示為__________________; 終邊在y軸上的角表示為________________________; 終邊落在坐標(biāo)軸上的角可表示為____________________________. (3)終邊相同的角 所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個(gè)集合______________________或___________
3、__________,前者α用角度制表示,后者α用弧度制表示. (4)弧度制 把長(zhǎng)度等于________長(zhǎng)的弧所對(duì)的__________叫1弧度的角.以弧度作為單位來度量角的單位制,叫做__________,它的單位符號(hào)是________,讀作________,通常略去不寫. (5)度與弧度的換算關(guān)系 360°=______ rad;180°=______ rad;1°=________ rad; 1 rad=____________≈57.30°. (6)弧長(zhǎng)公式與扇形面積公式 l=__________,即弧長(zhǎng)等于____________________. S扇=______
4、__=________. 2.三角函數(shù)的定義 設(shè)α是一個(gè)任意角,它的終邊上任意一點(diǎn)P的坐標(biāo)為(x,y),|OP|=r,我們規(guī)定: ①比值叫做α的正弦,記作sin α,即sin α=; ②比值叫做α的余弦,記作cos α,即cos α=; ③比值________(x≠0)叫做α的正切,記作tan α,即tan α=. (1)三角函數(shù)值的符號(hào) 各象限的三角函數(shù)值的符號(hào)如下圖所示,三角函數(shù)正值歌:一全正,二正弦,三正切,四余弦. (2)三角函數(shù)線 下圖中有向線段MP,OM,AT分別表示____________,__________和__________. 自我檢測(cè)
5、1.“α=”是“cos 2α=”的________條件. 2.與2010°終邊相同的最小正角為________,最大負(fù)角為________. 3.(2010·山東青島高三教學(xué)質(zhì)量檢測(cè))已知sin α<0且tan α>0,則角α是第________象限角. 4.若α=n·360°+θ,β=m·360°-θ(m,n∈Z),則α,β終邊關(guān)于直線________對(duì)稱. 5.已知角α的終邊上一點(diǎn)的坐標(biāo)為,則角α的最小正值為________. 探究點(diǎn)一 角的概念 例1 (1)如果角α是第三象限角,那么-α,π-α,π+α角的終邊落在第幾象限; (2)寫出終邊落在直線y=x上的角的集合;
6、 (3)若θ=168°+k·360° (k∈Z),求在[0°,360°)內(nèi)終邊與角的終邊相同的角. 變式遷移1 若α是第二象限的角,試分別確定2α,的終邊所在位置. 探究點(diǎn)二 弧長(zhǎng)與扇形面積 例2 已知一個(gè)扇形的圓心角是α,0<α<2π,其所在圓的半徑是R. (1)若α=60°,R=10 cm,求扇形的弧長(zhǎng)及該弧所在弓形的面積; (2)若扇形的周長(zhǎng)是一定值C(C>0),當(dāng)α為多少弧度時(shí),該扇形有最大面積? 變式遷移2 (1)已知扇形的周長(zhǎng)為10,面積為4,求扇形中心角的弧度數(shù); (2)已知扇形的周長(zhǎng)為40,當(dāng)它的半徑和中心角取何值時(shí),才
7、能使扇形的面積最大?最大面積是多少? 探究點(diǎn)三 三角函數(shù)的定義 例3 已知角α的終邊在直線3x+4y=0上,求sin α,cos α,tan α的值. 變式遷移3 已知角α的終邊經(jīng)過點(diǎn)P(-4a,3a) (a≠0),求sin α,cos α,tan α的值. 1.角的度量由原來的角度制改換為弧度制,要養(yǎng)成用弧度表示角的習(xí)慣,象限角的判斷,終邊相同的角的表示,弧度、弧長(zhǎng)公式和扇形面積公式的運(yùn)用是學(xué)習(xí)三角函數(shù)的基礎(chǔ). 2.三角函數(shù)都是以角為自變量(用弧度表示),以比值為函數(shù)值的函數(shù),是從實(shí)數(shù)集到實(shí)數(shù)集的映射,注意兩種定義法,即坐標(biāo)法和單
8、位圓法. (滿分:90分) 一、填空題(每小題6分,共48分) 1.點(diǎn)P從(1,0)出發(fā),沿單位圓x2+y2=1逆時(shí)針方向運(yùn)動(dòng)弧長(zhǎng)到達(dá)Q,則Q的坐標(biāo)為________. 2.(2011·汕頭模擬)若角α和角β的終邊關(guān)于x軸對(duì)稱,則角α可以用β表示為________. 3.已知點(diǎn)P落在角θ的終邊上,且θ∈[0,2π),則θ的值為________. 4.已知α為第三象限的角,則在第________象限. 5.(2011·南京模擬)已知點(diǎn)P(sin α-cos α,tan α)在第一象限,且α∈[0,2π],則α的取值范圍是________________. 6.若1弧度的圓心角
9、所對(duì)弦長(zhǎng)等于2,則這個(gè)圓心角所對(duì)的弧長(zhǎng)等于________. 7.(2011·淮安模擬)已知角α的終邊落在直線y=-3x上,則-=________. 8.閱讀下列命題: ①若點(diǎn)P(a,2a) (a≠0)為角α終邊上一點(diǎn),則sin α=; ②同時(shí)滿足sin α=,cos α=的角有且只有一個(gè); ③設(shè)tan α=且π<α<,則sin α=-; ④設(shè)cos(sin θ)·tan(cos θ)>0 (θ為象限角),則θ在第一象限.其中正確命題為________.(將正確命題的序號(hào)填在橫線上) 二、解答題(共42分) 9.(14分)已知扇形OAB的圓心角α為120°,半徑長(zhǎng)為6, (1
10、)求的弧長(zhǎng); (2)求弓形OAB的面積. 10.(14分)在單位圓中畫出適合下列條件的角α的終邊的范圍,并由此寫出角α的集合: (1)sin α≥; (2)cos α≤-. 11.(14分)已知角α終邊經(jīng)過點(diǎn)P(x,-) (x≠0),且cos α=x.求sin α+的值. 答案 自主梳理 1.始邊 頂點(diǎn) 終邊 逆 順 零 (1)第幾象限 (2){α|α=kπ,k∈Z} (3){β|β=α+k·360°,k∈Z} {β|β=α+2kπ,k∈Z} (4)半徑 圓心角 弧度制 rad 弧度 (5)2π π ° (6)|α|·r
11、 弧所對(duì)的圓心角(弧度數(shù))的絕對(duì)值與半徑的積 lr |α|r2 2.③ (2)α的正弦線 α的余弦線 α的正切線 自我檢測(cè) 1.充分而不必要 2.210°?。?50° 3.三 4.x軸 5. 課堂活動(dòng)區(qū) 例1 解題導(dǎo)引 (1)一般地,角α與-α終邊關(guān)于x軸對(duì)稱;角α與π-α終邊關(guān)于y軸對(duì)稱;角α與π+α終邊關(guān)于原點(diǎn)對(duì)稱. (2)利用終邊相同的角的集合S={β|β=2kπ+α,k∈Z}判斷一個(gè)角β所在的象限時(shí),只需把這個(gè)角寫成[0,2π)范圍內(nèi)的一角α與2π的整數(shù)倍,然后判斷角α的象限. (3)利用終邊相同的角的集合可以求適合某些條件的角,方法為先寫出與這個(gè)角的終邊相同的所有角的集
12、合,然后通過對(duì)集合參數(shù)k賦值來求得所需角. 解 (1)π+2kπ<α<+2kπ (k∈Z), ∴--2kπ<-α<-π-2kπ(k∈Z), 即+2kπ<-α<π+2kπ (k∈Z).① ∴-α角終邊在第二象限. 又由①各邊都加上π,得 +2kπ<π-α<2π+2kπ (k∈Z). ∴π-α是第四象限角. 同理可知,π+α是第一象限角. (2)在(0,π)內(nèi)終邊在直線y=x上的角是, ∴終邊在直線y=x上的角的集合為 . (3)∵θ=168°+k·360° (k∈Z), ∴=56°+k·120° (k∈Z). ∵0°≤56°+k·120°<360°,∴k=0,1,2時(shí)
13、,∈[0°,360°).
故在[0°,360°)內(nèi)終邊與角的終邊相同的角是56°,176°,296°.
變式遷移1 解 ∵α是第二象限的角,
∴k·360°+90°<α 14、∴是第一或第三象限的角.
∴的終邊在第一或第三象限.
例2 解題導(dǎo)引 本題主要考查弧長(zhǎng)公式和扇形的面積公式,并與最值問題聯(lián)系在一起.確定一個(gè)扇形需要兩個(gè)基本條件,因此在解題中應(yīng)依據(jù)題目條件確定出圓心角、半徑、弧長(zhǎng)三個(gè)基本量中的兩個(gè),然后再進(jìn)行求解.
解 (1)設(shè)扇形的弧長(zhǎng)為l,該弧所在弓形的面積為S,如圖所示,
當(dāng)α=60°=,
R=10 cm時(shí),
可知l=αR= cm.
而S=S扇-S△OAB=lR-R2sin
=××10-×100×
= cm2.
(2)已知2R+l=C,即2R+αR=C,
S扇=αR2=·αR·R=·αR·2R
≤·2=·2=.
當(dāng)且僅當(dāng)α 15、R=2R,即α=2時(shí),等號(hào)成立,即當(dāng)α為2弧度時(shí),該扇形有最大面積C2.
變式遷移2 解 設(shè)扇形半徑為R,圓心角為θ,所對(duì)的弧長(zhǎng)為l.
(1)依題意,得∴2θ2-17θ+8=0.∴θ=8或.
∵8>2π,舍去,∴θ=.
(2)扇形的周長(zhǎng)為40,即θR+2R=40,
S=lR=θR2=θR·2R≤2=100.
當(dāng)且僅當(dāng)θR=2R,即R=10,θ=2時(shí)扇形面積取得最大值,最大值為100.
例3 解題導(dǎo)引 某角的三角函數(shù)值只與該角終邊所在位置有關(guān),當(dāng)終邊確定時(shí)三角函數(shù)值就相應(yīng)確定了.但若終邊落在某條直線上時(shí),這時(shí)終邊實(shí)際上有兩個(gè),因此對(duì)應(yīng)的函數(shù)值有兩組,要分別求解.
解 ∵角α的終邊 16、在直線3x+4y=0上,
∴在角α的終邊上任取一點(diǎn)P(4t,-3t) (t≠0),
則x=4t,y=-3t,
r===5|t|,
當(dāng)t>0時(shí),r=5t,sin α===-,
cos α===,tan α===-;
當(dāng)t<0時(shí),r=-5t,sin α===,
cos α===-,tan α===-.
綜上可知,t>0時(shí),sin α=-,cos α=,tan α=-;
t<0時(shí),sin α=,cos α=-,tan α=-.
變式遷移3 解 r==5|a|.
若a>0,則r=5a,α角在第二象限,
sin α===,cos α===-,
tan α===-.
若a<0, 17、則r=-5a,α角在第四象限,
sin α===-,cos α===,
tan α===-.
課后練習(xí)區(qū)
1.(-,)
解析 依題意得Q(cos,sin),即Q(-,).
2.α=2kπ-β(k∈Z)
3.π
解析 由三角函數(shù)的定義,
tan θ===-1.
又∵sin >0,cos <0,
∴P在第四象限,∴θ=.
4.二或四
解析 ∵α是第三象限角,
∴180°+k·360°<α<270°+k·360°(k∈Z).
∴90°+k·180°<<135°+k·180°(k∈Z).
①當(dāng)k=2m (m∈Z)時(shí)可得90°+m·360°<<135°+m·360°,
18、故的終邊在第二象限.
②當(dāng)k=2m+1 (m∈Z)時(shí)可得270°+m·360°<<315°+m·360°,
故的終邊在第四象限.
綜上,可知是第二或第四象限的角.
5.∪
解析 由已知得
∴+2kπ<α<+2kπ或π+2kπ<α<+2kπ,k∈Z.
∵0≤α≤2π,
∴當(dāng)k=0時(shí),<α<或π<α<.
6.
解析 設(shè)圓的半徑為r,∴r·sin =1.
∴r=.∴弧長(zhǎng)l=α·r=.
7.2或-2
解析 ∵角α終邊落在直線y=-3x上,
∴α為第二或第四象限角.
當(dāng)α為第二象限時(shí),
-=-=2.
若α為第四象限時(shí),-=-=-2.
8.③
解析?、僦校?dāng)α在第三象 19、限時(shí),
sin α=-,故①錯(cuò).
②中,同時(shí)滿足sin α=,cos α=的角為α=2kπ+ (k∈Z),不只有一個(gè),故②錯(cuò).③正確.④θ可能在第一象限或第四象限,故④錯(cuò).綜上選③.
9.解 (1)∵α=120°=,r=6,
∴的弧長(zhǎng)為l=αr=×6=4π.……………………………………………………(4分)
(2)∵S扇形OAB=lr=×4π×6=12π,……………………………………………………(8分)
S△ABO=r2·sin =×62×=9,…………………………………………………(12分)
∴S弓形OAB=S扇形OAB-S△ABO=12π-9.…………………………………………… 20、…(14分)
10.解 (1)作直線y=交單位圓于A、B兩點(diǎn),連結(jié)OA、OB,則OA與OB圍成的區(qū)域即為角α的集合為.………………………………………(7分)
(2)作直線x=-交單位圓于C、D兩點(diǎn),連結(jié)OC、OD,則OC與OD圍成的區(qū)域(圖中陰影部分)即為角α終邊的范圍.故滿足條件的角α的集合為
.…………………………………………………………(14分)
11.解 ∵P(x,-) (x≠0),
∴點(diǎn)P到原點(diǎn)的距離r=.…………………………………………………………(2分)
又cos α=x,
∴cos α==x.
∵x≠0,∴x=±,
∴r=2.…………………………………………………………………………………(6分)
當(dāng)x=時(shí),P點(diǎn)坐標(biāo)為(,-),
由三角函數(shù)的定義,
有sin α=-,=-,
∴sin α+=--=-;……………………………………………(10分)
當(dāng)x=-時(shí),
同樣可求得sin α+=.……………………………………………………(14分)
高考數(shù)學(xué)復(fù)習(xí)精品
高考數(shù)學(xué)復(fù)習(xí)精品
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國(guó)人民警察節(jié)(筑牢忠誠(chéng)警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭(zhēng)當(dāng)公安隊(duì)伍鐵軍
- XX國(guó)企干部警示教育片觀后感筑牢信仰之基堅(jiān)守廉潔底線
- 2025做擔(dān)當(dāng)時(shí)代大任的中國(guó)青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會(huì)圍繞六個(gè)干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識(shí)培訓(xùn)冬季用電防火安全
- 2025加強(qiáng)政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進(jìn)持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個(gè)人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長(zhǎng)會(huì)長(zhǎng)長(zhǎng)的路慢慢地走